Рассеяние на свободных электронах (томсоновское рассеяние) не играет большой роли в ослаблении излучения в межзвездной среде, поскольку ее плотность недостаточно велика.
Однако в молодой Вселенной (до эпохи рекомбинации) короткая длина пробега фотонов объяснялась именно этим процессом.
Взаимодействие излучения с межзвездной средой зависит от ее плотности (плотности разных компонент – пыли, нейтрального газа, свободных электронов – в зависимости от диапазона длин волн). Поэтому все эффекты усиливаются в направлении на центральную часть Галактики, а также в плоскости Млечного Пути. Это приводит к тому, что многие обзоры внегалактических источников проводят не на всех участках неба: возникает «полоса избегания» вблизи плоскости галактического диска.
Все виды воздействия межзвездной среды на излучение заметнее в плоскости Галактики.
Различные компоненты межзвездной среды являются также и источниками излучения. С одной стороны, это приводит к появлению нежелательного фона в ряде исследований (например, при изучении реликтового излучения), а с другой – к существованию красивых туманностей разного типа.
9.3. Круговорот вещества в межзвездной среде
Звезды образуются из межзвездного газа, они возникают в недрах молекулярных облаков, состоящих в основном из молекулярного водорода (H2) и атомарного гелия с примесью пыли. Таким образом, химический состав среды определяет начальный химический состав звезд, и от этого зависят многие характеристики дальнейших процессов в звезде, в первую очередь это прозрачность ее вещества. В процессе своей жизни звезды превращают легкие элементы в тяжелые. Время жизни звезд с массой больше чем примерно 0,8 солнечных меньше времени, прошедшего с момента образования Галактики. Достигнув последних стадий своей эволюции, звезды тем или иным способом (звездный ветер, сброс оболочек, взрыв) возвращают часть вещества в межзвездную среду, обогащая ее тяжелыми элементами. После перемешивания (за счет турбулентности и других процессов) это вещество может войти в состав нового поколения звезд. Так происходит круговорот вещества в Галактике.
В Галактике между звездами и межзвездной средой постоянно происходит круговорот вещества.
Почему же весь газ в Галактике не может быстро превратиться в звезды? Дело в том, что для звездообразования газ должен быть плотным и холодным. Однако, как только появляются первые массивные звезды, они почти сразу становятся источниками мощного излучения и ветров, воздействующих на молекулярное облако, в котором они родились. Кроме того, время жизни самых массивных звезд достаточно мало – пара миллионов лет, после чего они взрываются как сверхновые, отдавая часть энергии в молекулярное облако, нагревая и разрушая его. Все эти процессы приводят к довольно низкой эффективности переработки газа в звезды: облако с массой под миллион солнечных может дать в итоге звездное скопление массой, исчисляемой лишь десятками тысяч солнечных масс. Так что круговорот вещества отчасти регулирует скорость и эффективность звездообразования, растягивая его во времени.
Масса газа в Галактике составляет около 10 млрд масс Солнца, а современный темп формирования звезд – несколько масс Солнца в год. Конечно, не весь газ находится в форме, пригодной для запуска процесса звездообразования, тем не менее с учетом возврата газа в межзвездную среду (возвращается порядка 10 % массы за счет сверхновых и ветров массивных звезд) на финальных стадиях эволюции звезд формирование новых поколений может продолжаться в нашей Галактике еще в течение миллиардов лет. Однако часть вещества остается связанной в компактных остатках (белые карлики, нейтронные звезды и черные дыры), а также входит в состав очень долгоживущих маломассивных звезд, бурых карликов и планет. Кроме того, часть газа переходит в горячее состояние с низкой плотностью, и не весь этот газ в будущем сможет охладиться и войти в состав молекулярных облаков, чтобы стать сырьем для рождения звезд.
В межзвездную среду попадает газ, обогащенный тяжелыми элементами за счет термоядерных реакций в звездах.
Сверхновые и мощные звездные ветра играют большую роль в генерации турбулентности, важной для динамики межзвездной среды. В частности, турбулентность хорошо перемешивает газ, что приводит к выравниванию химического состава межзвездной среды в Галактике.
Звездные ветра и сверхновые оказывают динамическое воздействие на межзвездную среду.