Этот факт о Вселенной исключительно важен для понимания общей картины. Мы наблюдаем повседневный мир и описываем его в контексте причин и следствий, оснований, предназначений и целей. Ни одна из этих концепций не существует на базовом, глубинном уровне реальности. Они возникают, когда мы поднимаемся от основ мира к повседневности. Чтобы уяснить, почему мы, казалось бы, живём в мире причин и целей, а глубинная природа реальности состоит из безликих лапласовских закономерностей, требуется понять стрелу времени.
* * *
Для того чтобы понять время, удобно начать с пространства. Здесь, на поверхности Земли, простительно полагать, что существует принципиальная разница между «вверху» и «внизу», глубоко укоренившаяся в структуре реальности. В действительности же, на уровне законов физики, все направления в пространстве равны. Если бы вы были космонавтом, вышли в скафандре в открытый космос и занялись бы там какой-то работой, то не заметили бы никакой разницы между любыми пространственными направлениями. Явные различия между «верхом» и «низом» заметны не потому, что такова природа пространства, а потому, что мы живём вблизи от очень значительного объекта: Земли.
Со временем всё точно так же. В нашем обыденном мире ход времени ни с чем не спутаешь, и простительно полагать, что существует принципиальная разница между прошлым и будущим. На самом деле оба направления времени равноценны. Явные различия между «прошлым» и «будущим» заметны не потому, что такова природа времени, а потому, что мы существуем вскоре после очень значительного события: Большого взрыва.
Вспомните Галилея и закон сохранения импульса: физика упрощается, если игнорировать трение и другие обременительные эффекты, а рассматривать изолированные системы. Итак, давайте представим себе, что маятник качается вперёд и назад, а для удобства предположим, что наш маятник находится в герметичной вакуумной камере и не испытывает сопротивления воздуха. При этом кто-то записывает на плёнку движение маятника и потом показывает вам этот ролик. Вы не слишком впечатлены — ведь вы видели маятники и раньше. Тогда вам открывают тайну: на самом деле ролик воспроизводился в обратном направлении. Вы этого не заметили, так как маятник, отмеряющий время назад, выглядит точно так же, как и отмеряющий время вперёд.
Это простой пример, иллюстрирующий очень общий принцип. Если система в соответствии с законами физики может каким-либо образом изменяться «вперёд», то возможна и её эволюция в обратном направлении, «назад». Законы физики никоим образом не регламентируют, что явления могут происходить только в одном направлении времени, но не в другом. Физические движения, насколько нам известно,
Всё это кажется достаточно разумным в случае простых систем: маятников, планет, вращающихся вокруг Солнца, хоккейной шайбы, скользящей почти без трения. Но если задуматься о сложных макроскопических системах, то весь наш опыт свидетельствует о том, что определённые процессы развиваются во времени именно от прошлого к будущему, но не наоборот. Яйца разбиваются и зажариваются, но их нельзя разжарить и залить обратно в скорлупу; духи рассеиваются по комнате, но никогда не возвращаются во флакончик; сливки смешиваются с кофе, но спонтанно разделить их нельзя. Если существует гипотетическая симметрия между прошлым и будущим, почему столь многие повседневные процессы происходят лишь от прошлого к будущему, но не наоборот?
Даже в случае таких сложных процессов оказывается, что возможны обратные процессы, полностью согласующиеся с законами физики. Яйца могут собраться в скорлупу, духи — вернуться во флакончик, сливки — отделиться от кофе. Нам всего лишь потребуется вообразить, как траектория каждой частицы в нашей системе (а также в телах, с которыми она взаимодействует) изменяется на противоположную. Ни один из этих процессов не нарушает законов физики — дело только в том, что они крайне маловероятны. В сущности, вопрос не в том, почему мы никогда не видели желтка, вернувшегося в скорлупу, а в том, почему в прошлом мы видели яйца целыми.
* * *
Наше базовое представление об этих проблемах было впервые сформулировано во второй половине XIX века группой учёных, основавших новую научную дисциплину под названием
Людвиг Больцман, гений энтропии и вероятности (1844–1906)