До Больцмана энтропию рассматривали в контексте неэффективности механизмов, например паровых двигателей, которые в те годы были ультрасовременной техникой. Всякий раз, сжигая топливо для выполнения полезной работы, например движения поезда, мы теряем часть энергии, выделяющейся в виде тепла. Энтропию можно понимать как способ измерения такой неэффективности; чем больше такой лишней теплоты, тем больше порождается энтропии. При этом, что бы вы ни делали, общая энтропия всегда будет положительной. Можно заморозить продукты в холодильнике, но при этом решётка у него сзади обязательно нагреется. Эта истина была сформулирована в виде
Больцман и его коллеги утверждали, что энтропию можно трактовать как способ упорядочения атомов в тех или иных системах. Можно считать теплоту и энтропию не разными явлениями, подчиняющимися различным законам физики, а свойствами систем, состоящих из атомов. Эти законы можно вывести из ньютоновской механики, которой подчиняется всё во Вселенной. Иными словами, теплота и энтропия — это просто разные
Главное озарение Больцмана заключалось в том, что, когда мы берём яйцо или чашку кофе со сливками, мы не видим отдельных атомов, из которых они состоят. Мы видим лишь наблюдаемые макроскопические черты. Существует множество вариантов расположения атомов, которые в макроскопическом масштабе выглядели бы совершенно одинаково. Наблюдаемые свойства предмета — это грубая картина истинного состояния системы.
С учётом этого Больцман предположил, что энтропию системы можно определить как число различных состояний, которые на макроуровне будут неотличимы от того состояния, в котором она сейчас находится. (На самом деле речь идёт о логарифме числа неотличимых состояний, но мы не будем вдаваться в эти математические детали.) При низкой энтропии таких состояний будет относительно немного, а при высокой — много. Существует множество способов упорядочить молекулы кофе и сливок так, чтобы две жидкости выглядели перемешанными, но найдётся гораздо меньше вариантов, в которых все сливки окажутся сверху, а весь кофе — снизу.
Благодаря определению Больцмана становится совершенно понятно, что энтропии свойственно расти с течением времени. Причина проста: состояний с высокой энтропией гораздо больше, чем состояний с низкой энтропией. Если начать с конфигурации с низкой энтропией и просто позволить ей развиваться в любом направлении, то с огромной вероятностью энтропия будет увеличиваться. Если энтропия системы достигла максимума, то говорят, что система находится в равновесии. В такой ситуации стрела времени исчезает.
* * *
Больцману удалось объяснить, почему завтра энтропия системы с большой вероятностью окажется выше, чем сегодня. Проблема в том, что, поскольку на уровне базовых законов ньютоновской механики прошлое и будущее не различаются, именно этот анализ также должен показывать, что энтропия была выше
Не хватает же допущения о том, в каких условиях возникла наблюдаемая Вселенная — а именно, что это было состояние с очень низкой энтропией. Философ Дэвид Альберт назвал это допущение
Никто в точности не знает, почему в ранней Вселенной была такая низкая энтропия. Это одно из явлений, которые могут иметь более глубокие объяснения, пока нами не найденные, либо, возможно, это просто факт, который мы должны принять как данность.
Тем не менее мы знаем, что эта исходная низкая энтропия породила «термодинамическую» стрелу времени — такую, в соответствии с которой энтропия в прошлом ниже, чем в будущем. Живительно, но представляется, что это свойство энтропии и вызывает
Глава 8
Память и причины