Рассмотрим множество всех простых чисел {2, 3, 5, 7, 11, 13 ...}. Предположим, что существует наибольшее простое число
Вот научное убеждение: общая теория относительности Эйнштейна адекватно описывает природу тяготения, как минимум в масштабах Солнечной системы и как минимум с очень высокой точностью. Вот его доказательство.
Общая теория относительности включает как принцип относительности (положение и скорость объекта можно измерить только относительно другого объекта), так и принцип эквивалентности (в небольших областях пространства тяготение неотличимо от ускорения), причём оба этих принципа были проверены и подтверждены с очень высокой точностью. Эйнштейновское уравнение общей теории относительности — это простейшее нетривиальное динамическое тождество, описывающее кривизну пространства–времени. Общая теория относительности объясняет явление, ранее считавшееся аномальным, — прецессию Меркурия — и позволила спрогнозировать несколько новых явлений, в частности отклонение света Солнцем и гравитационное красное смещение; эти явления были с успехом измерены. Благодаря более точным измерениям, выполняемым со спутников, удаётся уточнять все новые явления, которые, казалось бы, не вписывались в теорию относительности. Без учёта эффектов общей теории относительности система глобального позиционирования (GPS) быстро бы вышла из строя, а с учётом релятивистских поправок она работает превосходно. Любые известные альтернативы сложнее общей теории относительности либо требуют привнесения новых свободных параметров, которые приходится тонко подстраивать под эксперимент, чтобы избежать противоречий. Более того, можно исходить из идеи безмассовых частиц-гравитонов, способных взаимодействовать с любыми источниками энергии, и показать, что лишь полная версия такой теории приводит нас к общей теории относительности и уравнению Эйнштейна. Хотя эта теория не вполне согласуется с квантовомеханическим аппаратом, ожидается, что в современных экспериментах квантовые эффекты будут пренебрежимыми. В частности, предполагается, что квантовые поправки к тождеству Эйнштейна будут настолько малы, что их просто невозможно будет заметить.
В данном случае важны не отдельные детали, а сама природа метода, лежащего в основе таких доказательств. Математическое доказательство безупречно, оно всего лишь развивается в соответствии с законами логики. Имея посылки, мы неизбежно приходим к выводу.
Доказательство в пользу общей теории относительности — научное, а не математическое — имеет принципиально иной характер. Это абдукция: проверка гипотезы, сбор всё более и более убедительных фактов, поиск наилучшего объяснения феноменов. В данном случае мы выдвигаем гипотезу: гравитация есть искривление пространства–времени, описываемое тождеством Эйнштейна, — а затем пытаемся проверить эту гипотезу или опровергнуть её, одновременно продолжая искать альтернативные гипотезы. Если проверки становятся всё более и более точными, а при поиске альтернатив у гипотезы не появляется достойных конкурентов, то мы постепенно приходим к выводу, что гипотеза «верна». Нет чёткой, заметной линии, после пересечения которой идея превращается из «просто теории» в «доказанную теорию». Когда учёные наблюдали отклонение звёздного света во время полного солнечного затмения, в точном соответствии с прогнозом Эйнштейна, это не доказало его правоты; просто появились новые доказательства в пользу его теории.
Неотъемлемая черта данного процесса заключается в том, что такие выводы не являются неизбежными. Вполне можно представить себе мир, где была бы разработана эмпирически корректная теория тяготения, однако она была бы сложнее эйнштейновской. Возможен такой мир, в котором хватило бы и ньютоновской теории. Выбор альтернатив связан не с доказательством или опровержением, а со сбором фактов, пока остаются обоснованные сомнения; при этом субъективные вероятности уточняются в соответствии с байесовскими правилами. В этом заключается фундаментальное различие между знаниями, которые нам даёт математика/логика/чистый рассудок, и научными знаниями. Математические и логические истины будут верны в любом возможном мире; те факты, которые мы узнали при помощи науки, верны в нашем мире, но в другом могут не подтвердиться. Самые интересные вещи, которые можно узнать, — пожалуй, не те, которые когда-либо удастся «доказать» в строгом смысле этого слова.