Несмотря на вероятностную природу квантовомеханических прогнозов, они бывают необычайно точными. Так, можно измерить силу электромагнитного взаимодействия в одном эксперименте — например, узнать, какова будет отдача атома, когда он испустит фотон. Затем результат этого измерения можно использовать, чтобы спрогнозировать исход другого эксперимента — например, описать прецессию быстрых электронов в магнитном поле. Наконец, мы можем сравнить этот прогноз с фактическим результатом наблюдения. Степень соответствия результатов с прогнозами просто ошеломительна:
Наблюдение/Прогноз = 1,000000002.
Наблюдаемые и прогнозируемые результаты не вполне тождественны, но это связано с погрешностями при экспериментах и с теоретическим приближением. Тем не менее урок понятен: квантовая механика — это не какая-то расплывчатая или корявая система. Она неумолимо конкретна и строга.
Глава 21
Интерпретация квантовой механики
Во всей квантовой механике нас наиболее беспокоит тот факт, что в этой теории вообще появляется слово «наблюдатель».
Как бы то ни было, что есть «наблюдение» и «наблюдатель»? Считается ли «наблюдателем» микроскоп, либо микроскоп считается только при условии, что в него смотрит человек, обладающий сознанием? А как насчёт белки? А видеокамеры? Что, если я лишь мельком взгляну на предмет, но не буду внимательно его рассматривать? В какой именно момент происходит «коллапс волновой функции»? (Чтобы вас не томить, сразу упомяну, что почти никто из современных физиков не думает, что «сознание» хоть каким-то образом связано с квантовой механикой. Есть немногочисленные диссиденты, которые действительно так считают, но это крошечное меньшинство, несопоставимое с «мейнстримом».)
Все эти проблемы вместе известны как квантовомеханическая
Идеи есть. Один вариант — предположить, что, хотя волновая функция и играет важную роль в прогнозировании результатов экспериментов, на самом деле она не отражает физической реальности. Может быть, наряду с волновой функцией существует более глубокий уровень описания мира, в контексте которого такое развитие в принципе будет совершенно предсказуемым. Такая возможность иногда именуется подходом со «скрытыми параметрами», поскольку предполагает, что наилучший способ описания состояний квантовой системы пока ещё не открыт. Если такая теория верна, то она должна быть нелокальной — элементы системы должны непосредственно взаимодействовать с элементами, находящимися в других точках пространства.
Ещё более радикальный подход — просто отрицать существование базовой реальности. Такой метод в квантовой механике называется
Антиреализм на первый взгляд слишком драматичный шаг. Однако именно за антиреализм, по-видимому, выступал столь авторитетный человек, как Нильс Бор, дедушка квантовой механики. Писали, что он придерживался таких взглядов: «Квантового мира не существует. Есть только абстрактное физическое описание. Неверно полагать, что задача физики — выяснить, какова природа на самом деле. Физика занимается тем, что мы можем
Вероятно, наибольшая проблема антиреализма заключается в том, что сложно себе представить, как можно придерживаться такой позиции, не впадая в противоречия. Одно дело — сказать, что мы не полностью понимаем природу; другое дело — утверждать, что никакой природы вообще не существует. Кроме того, а кто именно это утверждает? Даже Бор в вышеприведённой цитате упоминает о том, что мы «можем сказать о природе». Вероятно, он подразумевал, что нечто под названием «природа» существует, раз мы можем о ней говорить.
* * *
К счастью, этим наши варианты не исчерпываются. Простейшая возможность заключается в том, что квантовая волновая функция вообще не является ни «инструментом учёта», ни одним из разнообразных квантовых параметров; волновая функция просто непосредственно отражает реальность. В то время как Ньютон или Лаплас могли представлять себе мир как совокупность положений и скоростей частиц, современный квантовый теоретик может считать мир волновой функцией. И всё, точка.
Сложность, связанная с таким грубым вариантом безыскусного квантового реализма, заключается в проблеме измерения. Если всё на свете — просто волновая функция, то из-за чего состояния «схлопываются» и почему акт наблюдения так важен?