Более чем через 200 лет успокаивающие прогнозы, сделанные Лапласом, стали нуждаться в небольшой проверке. Ученый решил продемонстрировать стабильность Солнечной системы не только в краткосрочной, но и в долгосрочной перспективе — до скончания века. Но работы по небесной механике французского математика Жюля Анри Пуанкаре (1854— 1912) в конце XIX века и особенно новые открытия XX века, в частности революционная теория хаоса, встали рядом с выводами Лапласа.
Ученый полагал, что решение проблемы трех тел не может быть найдено с помощью простой функции, а требует решения системы дифференциальных уравнений, то есть бесконечной суммы функций (которые зависят от таких орбитальных параметров, как эскцентриситет, наклонение орбиты, масса планеты). Эта система должна соответствовать условиям задачи и, кроме прочего, быть сходящейся для некоторых значений переменных. Лагранж уже нашел одно решение, но он не был уверен, что ряды сойдутся: если мы заменим переменные на их числовые значения, взятые из атмосферных данных, бесконечная сумма членов ряда станет конечным числом.
Поскольку условия не способствовали точным расчетам, Лаплас решил воспользоваться приблизительными значениями с усеченными рядами. В одном бесконечном ряду членов он сохранял только главные, а остальные опускал. Ученый думал получить разумные оценки поведения планет, изменяя лишь первые члены бесконечного ряда и полагая, что остальные члены не будут слишком сильно влиять на результат. Так он определил приблизительные решения для задачи трех тел и увидел, что хотя они и не полностью соответствуют действительности, эти мелкие отклонения несущественны. Он не ошибся.
Ряды, с которыми работал Лаплас, были рядами степеней, то есть бесконечными суммами функций, определенными с помощью последовательных степеней обратной массы Солнца. В первом члене появляется обратная величина массы, во втором — квадрат обратной величины солнечной массы, в третьем — куб и так далее. Учитывая соотношение солнечной массы с массами оставшихся планет и их спутников (отношение массы одной планеты к массе Солнца равно примерно 0,0001), Лаплас решил сократить этот ряд, используя только первый член и опуская члены начиная со степени 2. Он считал их несущественными: при возведении солнечной массы в квадрат частное становится порядка 0,00000001). Для наглядности, вместо того чтобы рассматривать А + В + С +..., он учитывал только А. Этот первый член позволял вывести приближение первого порядка.
Очевидно, что сумма первого и второго членов (А + В) была бы лучшим приближением, а сумма первых трех членов (А + В + С) — еще лучшим, но это потребовало бы погружения в крайне сложные вычисления. На самом деле если последовательные члены убывали, то приближение первого порядка (А) уже представляло собой достаточно точное значение суммы. Именно таким образом действовал французский математик: он использовал приближения первого порядка и не учитывал члены второго, третьего и последующих порядков.
Математики XIX века возьмут на себя обязанность доказать, что, к сожалению, большинство рядов небесной механики, открытых математиками предыдущего столетия, не сходятся (их результат дает бесконечное число). Таким образом, они не дали приемлемых решений или сколько-нибудь точных приблизительных значений. Лаплас сохранил только А, но оставшиеся члены В + С, хоть и были небольшими, оказывали свое влияние. С течением времени — в долгосрочном периоде — они могли стать причиной значительных изменений. Также в этом бесконечном ряду внезапно мог появиться новый значительный член, что противоречило бы тенденции следования первых членов. В частности, в уравнении системы Солнце — Юпитер — Сатурн (задача трех тел) Лаплас пренебрег членами, которые считал бесконечными, но которые, вопреки его догадкам, могли вызвать дестабилизацию Солнечной системы. Несколькими годами позже он объяснил свой метод в работе «Изложение системы мира» (книга IV, глава II):