Третья категория сил называется слабым ядерным взаимодействием, которое отвечает за радиоактивный распад атомных ядер и действует на все частицы вещества со спином 1
/2, но не действует на частицы со спином 0, 1 или 2, такие как фотоны и гравитоны. Механизм слабого ядерного взаимодействия оставался не в полной мере понятным до 1967 года, когда Абдус Салам из Имперского колледжа Лондона и Стивен Вайнберг из Гарвардского университета разработали теорию, объединившую слабое и электромагнитное взаимодействия – как за сто лет до того Максвелл объединил электричество и магнетизм. Салам и Вайнберг предположили, что кроме фотонов имеются еще и другие частицы со спином 1 – так называемые массивные векторные бозоны, – которые служат носителями слабого взаимодействия. Эти частицы обозначаются какВ теории Вайнберга – Салама, при энергиях куда выше 100 ГэВ, три новые частицы и фотон ведут себя одинаково. Но при более низких энергиях, с которыми мы имеем дело в обычных ситуациях, симметрия между частицами нарушается.
Четвертый тип взаимодействия – сильное ядерное взаимодействие. Благодаря ему внутри протонов и нейтронов удерживаются кварки, а протоны и нейтроны – внутри атомного ядра. Носителем этого взаимодействия считается частица со спином 1 под названием глюон, которая взаимодействует только с такими же частицами и с кварками. Сильное ядерное взаимодействие обладает удивительным свойством – так называемым конфайнментом[15]
. Это означает, что удерживаемые вместе частицы всегда имеют нулевой суммарный цветовой заряд. Невозможно получить отдельный кварк, потому что у него был бы какой-либо определенный цвет (красный, зеленый или синий). Вместо этого красный кварк должен объединяться с зеленым и синим посредством «струны» из глюонов (красный + зеленый + синий = белый). Такого рода триплет образует протон или нейтрон. Другая возможная комбинация – это пара, состоящая из кварка и антикварка (красный + антикрасный / зеленый + антизеленый / синий + антисиний = белый). Из таких комбинаций состоят частицы, называемые мезонами, которые неустойчивы, потому что кварк и антикварк могут взаимно аннигилироваться, в результате чего образуются электроны и другие частицы. Аналогично конфайнмент не допускает существования отдельного глюона, потому что глюоны также имеют цветовой заряд. Вместо этого приходится иметь дело с комбинациями глюонов с суммарным белым цветовым зарядом. Такая комбинация образует неустойчивую частицу, получившую название глюоний.