Читаем Вселенная в зеркале заднего вида полностью

То же самое можно сказать и про будущее вселенной. С течением времени тепло распределяется по вселенной все равномернее. Звезды выгорают, черные дыры в конце концов испаряются, везде царят холод и темнота. Конечным состоянием вселенной будет однородный, невероятно огромный и холодный океан из фотонов.

А как же наше происхождение? Поначалу вселенная была пестрая, состояла из крошечных участков тепла и холода. Однако горячие участки были всего лишь на 1/100 000 теплее, а холодные — лишь на 1/100 000 холоднее среднего.

На первый взгляд кажется, будто начало и конец вселенной очень похожи друг на друга, однако я утверждаю, что для конца вселенной характерна низкая энтропия, в то время как в начале энтропия была высокой. Откуда я это взял?

Все дело в гравитации. Начните с совершенно однородной вселенной и добавьте всего несколько сгустков там, где плотность чуть выше среднего. Оглянуться не успеете, как все близлежащее вещество начнет падать туда, и маленький сгусток станет сгустком побольше.

Энтропия — это просто количество способов, которыми можно перемешать систему так, чтобы на вид она осталась прежней. Как мы видели на примере радиоактивного распада, все хочет достичь состояния минимальной возможной энергии[35]. Когда частицы падают на сгустки, энергия превращается в тепло, а тепло — это всегда энтропия. Крошечные сгустки становятся все больше и больше, энтропия растет, и в результате получаются галактики, звезды и вы.

На ранних стадиях существования вселенной, когда все было упаковано гораздо плотнее, гравитация играла куда более важную роль, чем сегодня. Сейчас местная гравитация играет куда более важную роль, чем в далеком будущем. Для вселенной, где правит гравитация (как в начале времен), конфигурация минимальной энтропии — это идеально равномерное распределение. В будущем, когда гравитация утратит свою важность, идеально равномерное распределение — это конфигурация максимальной энтропии.

Влияние гравитации особенно хорошо заметно на примере распределения галактик. Начиная с 2000 года в рамках проекта «Слоановский цифровой небесный обзор» (Sloan Digital Sky Survey, SDSS) начали составлять карты почти всей близлежащей вселенной. Были сделаны снимки более ста миллионов галактик и измерены расстояния более чем до миллиона из них. И выяснилось, что налицо отчетливая структура — сгустки, волокна и пустые области (они так и называются — «пустоты», или «войды»). Однако если заглянуть в далекое прошлое (то есть взглянуть на очень далекие области, что одно и то же), окажется, что вселенная заполнена очень равномерно.



Это задача не из легких, она во многом связана с вопросом о том, почему ось времени направлена именно в таком направлении, а не в каком-нибудь другом. Возьмите вселенную в ее нынешнем виде и представьте себе кино, финалом которого было бы нынешнее положение дел. Если пустить кино задом наперед, все начнется с высокой энтропии, а закончится состоянием низкой энтропии. Иначе никак — законы физики, как мы уже убедились, обратимы во времени.

Сделаем следующий шаг и чуть-чуть изменим нынешнюю вселенную. Переставим там и сям про нескольку атомов. Если запустить задом наперед такую слегка измененную вселенную, то мы не придем к «началу» с равномерным распределением. Шансы на то, чтобы обнаружить в начале вселенной состояние низкой энтропии, оказались на диво малы — так же малы, как и вероятность, что вселенная будет развиваться в сторону состояния низкой энтропии.

В таком контексте трудно даже определить, что такое «маловероятно». Обычно, когда мы говорим, что что-то маловероятно, то имеем в виду, что есть какая-то цепочка событий, которая приведет к такому финалу, и основываем вероятность на событиях в прошлом. А у начала вселенной таких событий не было.

Вот такова в общем и целом «гипотеза прошлого». Можно даже представить себе, что это закон природы — не исключено, что у всех вселенных в момент зарождения энтропия низкая. Однако, честно говоря, это не очень утешает. Вопрос пока открыт, но в воздухе витают кое-какие идеи поинтереснее, чем «в самом начале вселенная была с низкой энтропией, потому что так сложилось».

Например, очень может быть, что наша вселенная — не первая. Многие ученые, в том числе физики из Принстона Пол Штейнхардт, Нил Тьюрок и их коллеги, предположили, что у вселенной случаются периоды расширения. В числе свойств так называемого «экпиротического сценария»[36] — то, что каждый данный участок вселенной со временем растягивается все сильнее и сильнее. В такой вселенной в целом энтропия не уменьшается, но по мере расширения отдельного участка может несколько разбавиться. Может быть, наша вселенная — всего лишь маленький клочок «множественной вселенной» или «мультиверса» куда больших масштабов, общая энтропия в которой была и остается колоссальной.

Перейти на страницу:

Все книги серии Золотой фонд науки

φ – Число Бога
φ – Число Бога

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вселенная! Курс выживания
Вселенная! Курс выживания

Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина.Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Джефф Бломквист , Дэйв Голдберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От Дарвина до Эйнштейна
От Дарвина до Эйнштейна

Эта книга – блестящее подтверждение вечной истины «не ошибается только тот, кто ничего не делает»! Человеку свойственно ошибаться, а великие умы совершают подлинно великие ошибки. Американский астрофизик Марио Ливио решил исследовать заблуждения самых блистательных ученых в истории человечества и разобраться не только в сути этих ляпсусов, но и в том, какие психологические причины за ними стоят, а главное – в том, как они повлияли на дальнейший прогресс человечества. Дарвин, Кельвин, Эйнштейн, Полинг, Хойл – эти имена знакомы нам со школьной скамьи, однако мы и не подозревали, в какие тупики заводили этих гениев ошибочные предположения, спешка или упрямство и какие неожиданные выходы из этих тупиков находила сама жизнь… Читателя ждет увлекательный экскурс в историю и эволюцию науки, который не только расширит кругозор, но и поможет понять, что способность ошибаться – великий дар. Дар, без которого человек не может быть человеком.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги