Джеймс Клерк Максвелл, живший в XIX веке, придумал замечательный мысленный эксперимент, при помощи которого можно было бы найти лазейку во Втором законе термодинамики. Максвелл представил себе емкость, наполненную молекулами газа, и быстрыми, и медленными, основательно перемешанными, так что достигнуто состояние высокой энтропии. В середине емкости есть перегородка, отделяющая левую половину от правой, а в перегородке — малюсенькая дверца. Каждый раз, когда с левой стороны коробки к дверце приближается холодная молекула (то есть молекула, которая движется со скоростью меньше средней), очень умный демон открывает дверцу и пропускает молекулу в правую сторону емкости. Точно так же, когда справа приближается горячая молекула, демон открывает дверцу и пропускает молекулу в левую сторону емкости. В остальное время дверца закрыта.
Казалось бы, все очень просто, однако если бы такое было возможно, нам никогда больше не пришлось бы потратить ни цента на кондиционеры. Демон, не покладая рук, трудится над тем, чтобы в емкости с одной стороны было жарко, с другой холодно — совсем как в «Макдоналдсе».
Впервые я столкнулся с этой задачей, когда учился на старших курсах, и она не произвела на меня ни малейшего впечатления. Молекула туда, молекула сюда — кому это интересно? Кроме того, Второй закон термодинамики по природе своей статистический — так зачем вообще искать в нем лазейку, какой в этом смысл?
Еще какой, мой юный я. Еще какой.
Вспомним, как
Я получил вполне достаточно писем от физиков-любителей, где излагались теории, грозившие, по мнению создателей, перевернуть все наши представления о вселенной. Сразу отбрасывать любые гипотезы и проекты, опровергающие Второй закон или предполагающие вечный двигатель — стандартная процедура. А вот Максвеллу положено послабление. Может быть, он и в самом деле открыл потайную дверь к тому, чтобы как-то снизить энтропию во вселенной. Если вы больше не в силах пребывать в напряженном ожидании развязки, не волнуйтесь: Второй закон цел и невредим, но чтобы понять, почему, придется залезть в голову демону.
В 1948 году Клод Шеннон, исследователь из лабораторий Белла, основал научную отрасль под названием «теория информации». Подобно тому как квантовая механика сделала физически возможным существование современной вычислительной техники, теория информации произвела переворот в криптографии и коммуникациях и сделала возможными новаторские решения вроде Интернета.
Один из главных результатов теории информации состоит в том, что информация тесно взаимосвязана с энтропией. Подобно тому, как энтропия газа описывает количество способов, какими молекулы можно переставить, информация сигнала описывает количество разных посланий, которые можно передать.
Представим себе, что я отправляю послание длиной ровно в две буквы. В принципе, поскольку в английском алфавите 26 букв, я мог бы передать вам 26 × 26 = 676 разных посланий, однако большинство подобных буквосочетаний совершенно бессмысленны. Двухбуквенных слов совсем немного (в словаре для игры в «Скрабл»[33]
их 101).Если среди вас есть специалисты по информатике, отмечу, что это значит, что хотя в принципе для дифференциации
Коммуникацию можно значительно сократить, если отметить, что некоторые буквы используются гораздо реже прочих. Например, в английском языке Е встречается значительно чаще, чем Z. Если играешь в «виселицу», простое знание, что в слове есть Z, резко сокращает число вариантов. Вот почему Е в «Скрабле» стоит всего одно очко, а Z — целых десять, и вот почему Е в азбуке Морзе обозначается., а Z —…
Отстучать Z занимает заметно больше времени, но это не страшно, потому что это приходится делать гораздо реже. Чем сложнее (или непредсказуемее) послание, тем больше информации в нем содержится и тем больше байтов данных потребуется, чтобы хранить его в компьютере.