Поскольку гравитация должна чувствовать всю энергию во вселенной, какая только есть, эта ошибка в гугол раз — самая больная проблема физики. И забывать о ней мы не будем. Однако мы не можем совсем игнорировать существование пар виртуальных частиц, поскольку они играют очень важную роль в устройстве черных дыр.
Представьте себе, что вы сидите в ракете, которая движется в вакууме с ускорением, и кругом постоянно создаются и аннигилируют электроны и позитроны. Каждая из этих виртуальных заряженных частиц выглядит так, словно ускоряется прямо на вас. А как мы теперь знаем, ускоряющиеся частицы испускают излучение. Иначе говоря, если вы находитесь в ускоряющемся звездолете, уже само включение реактивных двигателей заставит вас увидеть излучаемый вакуумом свет. Если бы мы не проделали предварительно упражнений с МКС, вы бы, наверное, решили, что я спятил.
То, что ускоряющийся наблюдатель увидит излучение, независимо обнаружили в семидесятые годы сразу несколько ученых, в том числе канадский физик Уильям Унру, в честь которого и получил название этот эффект. В нормальных обстоятельствах эффект этот крошечный. Если выше ускорение составляет 1
Я привожу в пример излучение, которое видит ускоряющийся наблюдатель, поскольку Эйнштейн подарил нам симметрию: двигаться с ускорением и находиться в реальном гравитационном поле — это, в сущности, одно и то же. А как мы сейчас увидим, это сильно влияет на то, как устроены черные дыры.
Да они же не черные!
Когда мы видели Алису в последний раз, она падала в черную дыру. Предположим, мы решили ее выручить и вытащить ее на лассо до того, как она пересечет горизонт событий. Теперь она не падает в черную дыру, а болтается снаружи, подвешенная на крепкой веревке. Как мы выражались, когда овладевали кратким курсом теории относительности, Алиса — наблюдатель, движущийся с ускорением. Ведь если бы она находилась в звездолете, который движется с ускорением, ощущения у нее были бы очень похожие — разве что за исключением приливных эффектов.
Принцип эквивалентности предполагает, что не должно быть никаких локальных различий между тем, кого ускоряют ракетные двигатели, и тем, кто на самом деле находится в гравитационном поле. Поскольку из ракеты мы увидим излучение Унру, то и Алиса, висящая возле черной дыры, тоже должна увидеть нечто такое же. Иначе говоря, она увидит, что черная дыра светится.
В 1974 году Стивен Хокинг сделал вылазку в область, пограничную между квантовой механикой и общей теорией относительности, и показал, что черные дыры на самом деле не черные. Это одна из крутейших астрофизических идей, причем большинство физиков считает, что так и есть, хотя мы никогда этого не наблюдали. Нужно знать всего две вещи — что ускоряющиеся наблюдатели видят излучение и что есть такой принцип эквивалентности — и из них — ба-бах! — следует излучение Хокинга.
Принцип эквивалентности сам по себе предполагает, что законы физики инвариантны во времени, а это, если верить Нётер, означает, что у нас есть сохранение энергии. Но вот тут-то и зарыта собака: поскольку излучение — это вид энергии, а черные дыры выбрасывают эту энергию в космос, она должна откуда-то браться. При этом в окрестностях черной дыры источник энергии может быть только один — и это, разумеется, масса самой черной дыры.
Давайте рассмотрим созданную случайным образом пару из частицы и античастицы[77]
. Когда создаешь пару, то обычно две частицы хотят от жизни только одного — воссоединиться. И делают это очень быстро. Один из главных прогнозов квантово-механической неопределенности состоит в том, что чем больше энергии позаимствовано у вакуума, чтобы создать пару, тем меньше времени частицы способны пробыть в разлуке. Не зря говорят, что Сила должна пребывать в равновесии.С точки зрения частиц, созданных возле горизонта событий, ничего особенного не происходит — по крайней мере поначалу. Частицы-то не знают, что поблизости черная дыра. Они пребывают в свободном падении, точь-в‑точь как наши астронавты на борту МКС.
Но время от времени случается так, что одна частица создается чуть-чуть ниже горизонта событий, а вторая чуть-чуть выше. Ту частицу, которой хватило глупости пренебречь вселенским знаком «Посторонним вход воспрещен», поглощает черная дыра, а ее партнерша улетает наслаждаться полной свободой. Квантовая судьба переменчива. Которой из частиц суждено жить, а какой умереть — вопрос чистой случайности.
Интуитивно можно предположить, что поскольку черные дыры постоянно заглатывают виртуальные частицы, на калорийном рационе из вакуума они вскоре разжиреют. Но тут есть одна тонкость. Энергия очень зависит от того, где находишься. Если выбросить пианино из окна шестого этажа, то с точки зрения бросавшего оно обладает куда меньшей энергией, чем с точки зрения бедолаги, на которого оно рухнет.