Читаем Вселенная в зеркале заднего вида полностью

«Звездный путь» можно считать прямо-таки документальным кино о телепортации, посланным нам из будущего, если не считать нескольких мелких ошибок, которые допустил Джин Родденберри. При настоящей телепортации атомы не посылают с площадки устройства вниз, на планету. Просто после телепортации на отправной площадке образуется набор химикалий размером с вас, а на приемной строят нового вас из набора химикалий на том конце. А в остальном все и должно происходить точно так же, как в «Звездном пути».

Правда, круто?

Философ Дерек Парфит описывает устройство, очень похожее на то, которое мы только что обсуждали, только, сами понимаете, безо всяких злых двойников.

Сканер здесь, на Земле, уничтожит мой мозг и тело и при этом в точности зафиксирует состояние всех моих клеток. Затем он перешлет данные по радио. Поскольку они будут перемещаться со скоростью света, на дорогу до Репликатора на Марсе уйдет три минуты. А Репликатор создаст из нового вещества мозг и тело, в точности подобные моим. Именно в этом теле я и очнусь.

Несмотря на то что ваше тело будет теперь состоять из совершенно других атомов, его конфигурация будет идентична оригиналу, поэтому вы с полным правом можете настаивать, что тот, кто очнулся в репликаторе, это вы и есть.

Однако затем Парфит поднимает ставки и задается вопросом, что будет, если оригинал не уничтожен. Который из них вы? Как мы вскоре убедимся, этот вопрос при применении «настоящего»[80] устройства для телепортации не встает, поскольку оригинал всегда уничтожается. И все же этот сценарий заставляет задуматься. Если вы не есть сумма составляющих ваш частиц, то что вы такое?

В 1993 году инженер-программист из компании IBM по имени Чарльз Х. Беннетт предложил первую действующую модель устройства для телепортации, хотя насколько оно было применимо на практике, вопрос спорный. Модель позволяла телепортировать всего одну частицу за раз.

Я понимаю, это обескураживает. При таких условиях проще не трудиться и прибегнуть к ловкости рук — примерно как ваш дядюшка, когда вытаскивал из вашего уха монетку или дергал вас за нос. Разве нельзя просто сказать, что я телепортировал электрон на тот конец комнаты, а показать вам какой-то первый попавшийся электрон с воздушного шарика, который я потер о брюки? Их же невозможно различить!

Неопределенность и спин

Все электроны одинаково хороши, но это не значит, что любые два электрона всегда выглядят одинаково. Как мы уже видели, электроны и все другие частицы обладают врожденным свойством под названием спин. Простейшее устройство для телепортации вполне могло бы сводиться к определению, куда направлен спин электрона, и копированию этой информации на другой электрон на том конце комнаты. На первый взгляд все просто, правда?

А вот и нет.

Мы с вами играем уже в высшей лиге, поэтому пора раз и навсегда прояснить, какова природа квантовой механики. До сих пор у нас была возможность более или менее пренебрегать эффектами квантово-механического мира, однако я так и не сказал, что же это такое — квантовая механика. Ее можно свести к трем простым идеям.

1. Физические измерения могут привести лишь к определенному набору результатов. Это как бросать монетку: или орел, или решка, третьего не дано.

2. Во вселенной есть элемент случайности. Когда мы измеряем энергию, спин или положение электрона, то не можем уверенно сказать, что получим, пока не проделаем измерение. Мы можем лишь описывать вероятности.

3. Вероятности описываются волнами. Квантовая механика просто детально расписывает, как эти вероятности различных результатов меняются в пространстве и времени.

Следствия из этих правил весьма далеко идущие, и об одном из них вы, скорее всего, слышали. В 1927 году немецкий физик Вернер Гейзенберг выдвинул свой знаменитый принцип неопределенности. Гейзенберг обнаружил, что чем лучше знаешь, где находится электрон, тем меньше знаешь, куда он направляется, и наоборот. Кроме того, неопределенность предполагает, что уже сама попытка выяснить, чем занят электрон, может на него повлиять.

Например, можно получить электрон со случайным спином.

Из первой главы мы знаем, что если взять и измерить спин электрона при помощи набора магнитов, можно получить всего два результата: вверх или вниз. Только вот предсказать, какой именно, нельзя.

Перейти на страницу:

Все книги серии Золотой фонд науки

φ – Число Бога
φ – Число Бога

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вселенная! Курс выживания
Вселенная! Курс выживания

Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина.Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Джефф Бломквист , Дэйв Голдберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От Дарвина до Эйнштейна
От Дарвина до Эйнштейна

Эта книга – блестящее подтверждение вечной истины «не ошибается только тот, кто ничего не делает»! Человеку свойственно ошибаться, а великие умы совершают подлинно великие ошибки. Американский астрофизик Марио Ливио решил исследовать заблуждения самых блистательных ученых в истории человечества и разобраться не только в сути этих ляпсусов, но и в том, какие психологические причины за ними стоят, а главное – в том, как они повлияли на дальнейший прогресс человечества. Дарвин, Кельвин, Эйнштейн, Полинг, Хойл – эти имена знакомы нам со школьной скамьи, однако мы и не подозревали, в какие тупики заводили этих гениев ошибочные предположения, спешка или упрямство и какие неожиданные выходы из этих тупиков находила сама жизнь… Читателя ждет увлекательный экскурс в историю и эволюцию науки, который не только расширит кругозор, но и поможет понять, что способность ошибаться – великий дар. Дар, без которого человек не может быть человеком.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги