Читаем Вселенная в зеркале заднего вида полностью

Подобным же образом у всех планет Солнечной системы общая история, а следовательно, когда они превратились в аккуратненькие сфероиды, то в конечном итоге стали вращаться вокруг Солнца в одном направлении. Очень удобное, хотя и произвольное, определение верха в Солнечной системе гласит, что все планеты, если смотреть на них «сверху», вращаются против часовой стрелки. За исключением впавшего в полную немилость Плутона[86], остальные восемь примерных (то есть настоящих) планет дружно вращаются вокруг Солнца по почти круглым орбитам в плоскости, которую называют плоскостью эклиптики.

Верх планет и верх Солнечной системы не обязательно соответствуют друг другу. Например, полюса Земли наклонены на 23½ градуса относительно полюсов эклиптики. А отклонение Венеры от оси составляет всего три градуса, да и вращается она в противоположную сторону, а значит, верх (если определять его по вращению, то есть спину, планеты) у Венеры более или менее там, где у Солнечной системы низ. Солнце на Венере восходит на западе.

Независимо от первоначальной точки зрения очевидно, что если повернуть Землю на один полный оборот (наверное, вы знаете, что это и есть сутки), она будет выглядеть точно так же, как в момент начала. Давайте выберем на Земле точку не вполне случайным образом — пусть это будет городок Эврика в области Нунавут в Канаде (широта 80° N, долгота 86° W). Жители Эврики всегда знают, где у них север: от них до полюса примерно 1100 км в определенном направлении. А главное, это направление никогда не меняется.

Однако если вы умудритесь уменьшить корабль до субатомных размеров в духе «Фантастического путешествия» и остановите ваше уменьшенное судно над соответствующим местом электрона, результаты у того же эксперимента получатся совсем другие. Сверьтесь с компасом — и вы скорее всего обнаружите, что верх (север) находится от вас в одном направлении, но есть небольшая вероятность, что он лежит в противоположной стороне. Такая вот квантовая механика, что поделаешь. Измерить можно далеко не все величины, и все то, что казалось вам попросту невозможным, станет теперь разве что не очень вероятным. И возможные спины скажут нам гораздо больше о том, как функционирует частица того или иного типа, чем кажется на первый взгляд.

Не у всех частиц спины одинаковые

Наверное, вы помните, как съязвил Эрнест Резерфорд — сказал, что вся наука, кроме физики, это «коллекционирование марок». Это было в самом начале двадцатого века, и Резерфорд еще не знал, что и в физике есть очень многое от коллекционирования марок. Просто так вышло, что номиналы марок очень похожи на спины частиц.

Эксперименты показали, что у частиц каждого типа строго определенное количество спина — точно так же как они обладают строго определенной массой и зарядом. Подобно заряду, спины могут принимать лишь строго определенные значения. Более того, все типы частиц делятся ровно на две разновидности — на бозоны и фермионы. Чтобы вы не сошли с ума, я в конце книги поместил небольшую шпаргалку про элементарные частицы. Берите, не стесняйтесь.

У самых простых (по крайней мере, в том, что касается спина) частиц спин равен 1. Все, что касается спина, выражается в приведенных постоянных Планка с каким-то множителем (как мы уже видели, эта постоянная обозначается странненькой буквой ћ). Число это поразительно маленькое. Для сравнения укажу, что момент импульса у секундной стрелки в старинных напольных часах примерно в 1029 раз больше.

Момент импульса у спина очень мал, но он есть. Если бы я запустил лучом поляризованного света (а фотоны — частицы, обладающие спином, равным 1) в Северный полюс, то в конечном итоге мог бы остановить вращение Земли. С другой стороны, для такого луча мне потребовалось бы примерно 1068 фотонов, в несколько сотен тысяч раз больше, чем то количество, которое испустит Солнце за все время своего существования.

Частиц со спином‑1 довольно много, и у них всех есть нечто общее. Фотон — переносчик электромагнитного взаимодействия, глюон — переносчик сильного взаимодействия, а частицы, не слишком изобретательно именуемые W— и Z-бозоны, — переносчики слабого взаимодействия. Чувствуете закономерность?



Все частицы со спином‑1 (или со спином, представляющим собой любое целое число) известны под именем бозоны, и у них очень много общего — отнюдь не только роль переносчика.

Частицы со спином‑1 называются так потому, что для того, чтобы частица стала выглядеть так же, как и в момент начала вращения, ей нужен ровно один оборот. И хотя вашему непривычному мозгу может показаться, что так и должно быть, не время себя поздравлять. Далеко не у всех частиц спин равен единице.

Перейти на страницу:

Все книги серии Золотой фонд науки

φ – Число Бога
φ – Число Бога

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вселенная! Курс выживания
Вселенная! Курс выживания

Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина.Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Джефф Бломквист , Дэйв Голдберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От Дарвина до Эйнштейна
От Дарвина до Эйнштейна

Эта книга – блестящее подтверждение вечной истины «не ошибается только тот, кто ничего не делает»! Человеку свойственно ошибаться, а великие умы совершают подлинно великие ошибки. Американский астрофизик Марио Ливио решил исследовать заблуждения самых блистательных ученых в истории человечества и разобраться не только в сути этих ляпсусов, но и в том, какие психологические причины за ними стоят, а главное – в том, как они повлияли на дальнейший прогресс человечества. Дарвин, Кельвин, Эйнштейн, Полинг, Хойл – эти имена знакомы нам со школьной скамьи, однако мы и не подозревали, в какие тупики заводили этих гениев ошибочные предположения, спешка или упрямство и какие неожиданные выходы из этих тупиков находила сама жизнь… Читателя ждет увлекательный экскурс в историю и эволюцию науки, который не только расширит кругозор, но и поможет понять, что способность ошибаться – великий дар. Дар, без которого человек не может быть человеком.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги