Читаем Вселенная. Вопросов больше, чем ответов полностью

Интересно отметить, что всего через несколько месяцев по- Сле опубликования статьи Эйнштейна появилась работа нидер­

309

— Часть VI —

ландского астронома Виллема де Ситтера, в котором было най­дено другое статическое решение для космологической модели с лямбда-членом — а именно решение с плотностью и давлени­ем вещества равным нулю, т. е. совершенно пустой Вселенной с одним только лямбда-членом. Статической она будет, потому что в ней совершенно ничего со временем не меняется — ведь плотность лямбда-члена, в отличие от плотности любых других компонент вещества и излучения, от времени не зависит. Не рас­тет при расширении, не уменьшается при сжатии — ни в целом (в среднем по Вселенной), ни в отдельных ее частях. Он не об­разует никаких пространственных сгущений или разрежений. Именно поэтому лямбда-член зачастую называется космологи­ческой постоянной.

Таким образом, Вселенная де Ситтера, как и Вселенная Эйнштейна, тоже будет вечной и неизменной. Но если в такую Вселенную поместить несколько пробных (т. е. не оказывающих никакого влияния ни на получившуюся модель, ни друг на дру­га) частиц, то они будут удаляться друг от друга по экспоненци­альному закону.

Забегая немного вперед, скажем, что судьба модели де Ситтера в современной космологии, несмотря, казалось бы, на значительную искусственность (полное отсутствие вещества!), оказалась определенно удачнее судьбы модели Эйнштейна.

2. МОДЕЛЬ ФРИДМАНА

Смертельным ударом для модели Эйнштейна оказалось от­крытие Эдвином Хабблом разбегания галактик. Впрочем, стро­го говоря, первым был американский астроном Весто Слайфер. Исследование спектров других галактик (хотя в то время их на­зывали «внегалактическими туманностями» и кипели споры об их природе) он начал еще в 1912 году. А в том же 1917 году, в кото­ром вышла вышеописанная работа Эйнштейна, он опубликовал статью, где на основе красного смещения линий в измеренных спектрах «туманностей» сделал вывод об их удалении от нас.

Однако, повторим еще раз, так как, ни природа данных «ту­манностей», ни расстояние до них известны еще не были, ника­ких «космологических» выводов в его статье не делалось. Так что лавры первооткрывателя Эдвин Хаббл все же носит по пра­ву. Своими наблюдениями 1927-1929 годов на 250-см телескопе- рефлекторе (самом большом телескопе того времени) обсерва­тории Маунт Вилсон он убедительно доказал, что загадочные «спиральные» туманности на самом деле являются гигантскими звездными системами — галактиками, такими же, как и наша Галактика. Самой первой «туманностью», в которой Хаббл разглядел отдельные звезды, была знаменитая Туманность Андромеды.

Но этим открытия Хаббла отнюдь не ограничились. Он су­мел измерить расстояние до этих галактик! Хаббла «выручили» Цефеиды — звезды типа дельты Цефея, которые изменяют свой блеск по периодическому закону. Ранее было показано (по звез­дам нашей Галактики), что светимость и период изменения бле­ска цефеид находятся во взаимосвязи. Таким образом, измеряя период, мы можем получить светимость звезды-цефеиды. А зная светимость и видимую звездную величину, мы можем вычислить Расстояние (разумеется, здесь есть свои сложности, мы связан­ные, например, с межзвездным поглощением света).

311

— Часть VI —

Таким путем Хаббл смог определить расстояние до тех двух десятков туманностей, красное смещение (а следовательно, и скорость удаления) которых ранее измерил Слайфер. А это, в свою очередь, позволило ему получить свое знаменитое соот­ношение: v = Hr, где v — скорость удаления от нас галактики, г — расстояние до нее, а Н — постоянная, носящая ныне его имя, «постоянная Хаббла».

Необходимо сразу отметить, что скоростью удаления галакти­ки, фигурирующей в законе Хаббла, является скорость, обуслов­ленная космологическим расширением Вселенной. Это весьма принципиальный момент, который иногда упускают из виду. Так, Большой Взрыв, положивший начало нашей Вселенной, за­частую представляют в виде взрыва некой гигантской космиче­ской «бомбы», после чего начался разлет вещества в простран­стве. Естественно, столь же часто после подобных представлений возникает следующий вопрос: а где же, в таком случае, находится то самое место, откуда «начался» «разлет» Вселенной? В каком оно созвездии и насколько от нас далеко в этом направлении?

А так как задающий подобный вопрос зачастую знает, что га­лактики удаляются от нашей во все стороны, у такого человека может возникнуть идея, что «центр Вселенной» находится где- то в нашей Галактике или, по крайней мере, поблизости от нее.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука