Каллисто — последний и наименее яркий галилеев спутник Юпитера. Поверхность этого спутника сильнее, чем у других галилеевых спутников, покрыта ударными кратерами больших и малых размеров. Отсутствие магнитосферы говорит об отсутствии в центре Каллисто сплошного металлического ядра — по- видимому, ее ядро состоит из смеси металлов с минералами. Внешние слои Каллисто состоят, по-видимому, из льда, под которым, как на Европе, может находиться жидкий соленый океан. Что до мантии, то она является смесью льда и минералов, причем количество льда убывает по направлению к центру. По- видимому, материал, из которого «строилась» Каллисто, изначально содержал очень много молекул воды. Еще раз обратим внимание на общую тенденцию: чем дальше от центрального светила (в данном случае «светилом» является Юпитер), тем меньше тяжелых элементов и больше легких.
78
— Ближайшие окрестности —
Остальные спутники Юпитера многочисленны (более 50), но невелики. Самые дальние из них обращаются по орбитам, находящимся в десятках миллионов километров от планеты-гиганта. Вне всякого сомнения, это захваченные притяжением Юпитера астероиды. Наибольший интерес вызывают «внутренние» спутники — те, орбиты которых лежат внутри орбиты Ио.
Их четыре: Метида, Адрастея, Амальтея, Теба. Крупнейший из них — Амальтея — представляет собой глыбу неправильной формы размером 262 х 134 км. Интересны орбиты двух ближайших к Юпитеру спутников — Метиды и Адрастеи. Они круговые, без наклона к экватору планеты и очень близки друг к другу (Метида чуть ближе к Юпитеру). Эти спутники находятся близ внешнего резкого края пылевого кольца Юпитера, открытого «Вояджером-l». Кольцо это, строго говоря, является системой колец. Полученные от «Галилео» данные позволяют утверждать, что кольца Юпитера состоят из пыли, выбитой из внутренних спутников при ударах метеоритов. Внутренний край кольца практически касается облачного слоя планеты. Кольца Юпитера разреженные и довольно темные, их альбедо 0,015.
Но когда говорят о кольцах планет-гигантов, память сразу подсказывает: Сатурн! Действительно, его кольца ярки и роскошны на вид (рис. ю). Лишь несовершенство оптики телескопа Галилея помешало ему открыть их — хотя какие-то «придатки» по краям планеты он все же заметил. Пальма первенства в открытии колец Сатурна принадлежит замечательному физику Христиану Гюйгенсу, составившему по обычаю тех лет анаграмму, расшифровывающуюся так: «Кольцом окружен тонким, плоским, нигде не прикасающимся, к эклиптике наклоненным». Действительно, кольца Сатурна лежат в плоскости экватора планеты, наклоненной к эклиптике под углом почти 27 градусов. Поскольку орбитальный период Сатурна составляет без малого 30 лет, а кольца очень тонкие, примерно каждые 15 лет наступает кратковременный период полной не- наблюдаемости колец с Земли — мы просто-напросто находимся в их плоскости. Согласитесь, что трудно рассмотреть несмя
79
— Часть II —
тый лист фольги, глядя на него строго с ребра, а лист фольги, причем тончайшей, — очень хорошая модель, наглядно демонстрирующая крайне малую толщину колец, не превышающую 1 км. Разумеется, период невидимости колец наступает и тогда, когда кольца и лучи Солнца лежат в одной плоскости. Эти периоды невидимости календарно близки, что и понятно: «с точки зрения Сатурна» Земля и Солнце лежат в одной области небосвода. За несколько дней до невидимости кольца Сатурна выглядят сверкающей иглой, «пронзающей» диск планеты. Ближайший период невидимости колец придется на середину 2009 года, а максимального раскрытия колец придется подождать до 2016 года.
Рис. ю. Кольца Сатурна. Снимок АМС «Кассини»
Установление метеоритной природы колец Сатурна связано с именем русского ученого — академика А.А. Белопольского. Камень размером около 1 м — вот «портрет» типичного элемента колец Сатурна. Мириады подобных камней обращаются во
80
— Ближайшие окрестности —
круг Сатурна по кеплеровским орбитам, потому что их взаимное притяжение совершенно ничтожно. Поскольку альбедо колец Сатурна беспрецедентно высоко, следует считать, что частицы кольца состоят преимущественно из льда или хотя бы покрыты льдом и инеем. При температуре колец 93 К и относительной слабости инсоляции лед, конечно, не будет эффективно испаряться.