Чтобы объяснить сущность решения, вернемся к проблеме физического вакуума, о котором мы немного рассказали во все том же разделе, посвященном черным дырам. Само существование физического вакуума — точнее то, что он является отнюдь не абсолютной пустотой, а наинизшим (но не нулевым!) состоянием квантовых полей, — сомнений не вызывает. Об этом говорит и так называемый лэмбовский (по имени первооткрывателя — американского физика Уиллиса Лэмба) сдвиг уровней энергии атома, обусловленный взаимодействием электронов с вирту- ЭДьными частицами, и экранировка заряда протона на близких Расстояниях, и, наконец, «рождение» самих виртуальных частиц («перевод» их в реальные) при «снабжении» их достаточной
энергией.
Но для целей нашего рассказа важным является уравнение с°стояния вакуума, т. е. взаимосвязь между его давлением и ^отностью энергии. Так вот, давление вакуума является отри
333
цательным — трудно представимая в повседневной жизни картина. Впрочем, кое-какие аналогии можно придумать — например, растянутую со всех сторон стальную болванку.
Однако давление вакуума мало того что отрицательное — так еще и равно по модулю его плотности энергии. А вот такого в земных условиях воспроизвести никак нельзя.
Следствием такого уникального уравнения состояния являются два обстоятельства: во-первых, плотность вакуума при расширении не меняется; а во-вторых, он «вызывает» силы отталкивания, т. е. действует как эффективная антигравитация1.
И совместное действие этих двух замечательных свойств вакуума может обеспечить экспоненциальный рост размеров Вселенной — если бы его плотность энергии была бы достаточно большой. Кстати, малая (судя по всему) плотность энергии того физического вакуума, с которым мы «имеем дело», является одной из до сих пор не решенных загадок.
Но что, если предположить, что в начальные моменты жизни Вселенной плотность энергии вакуума была огромна?
Судя по всему, одним из первых, кто начал рассматривать этот вопрос, был советский ученый Э.Б. Глинер — еще в 1965 году. Далеко не все эту гипотезу приняли, встречалась она и с весьма резкой критикой, в том числе и со стороны выдающихся ученых. Тем не менее были и сторонники, среди которых имелись ученые не менее выдающиеся. На протяжении 70-х годов гипотеза постепенно углублялась и прорабатывалась, до стадии теории ей оставалось совсем немного. В 1978 году Андрей Линде и Геннадий Чибисов, а в 1979-1980 годах Андрей СтаробинскиЙ подошли к этому почти вплотную.
Но решающий шаг сделан в январе 1981 года, когда американский космолог Алан Гус опубликовал статью «Инфляционная Вселенная: возможное решение проблемы горизонта и плоскост-
1 Самые догадливые читатели, думаем, уже заподозрили связь физиче- ского вакуума и лямбда-члена Эйнштейна. Но об этом — немного пого дя. — Примеч. авт.
334
яоСти». И с его же легкой руки новая теория получила название «теория инфляции»1.
Мы не будем излагать суть сценария инфляции, предложенного именно Гусом, — хотя тут и появляется возможность щегольнуть словечками типа «ложный вакуум» и «подбарьерное туннелирование». Мы поборем этот искус, тем более что сценарий Гуса ныне утратил свою актуальность и носит сейчас название «старая инфляция», представляя собой скорее исторический интерес. Расскажем про общие черты всех моделей инфляции, которых накопилось немало («старая», «новая», «хаотическая», «степенная», «лямбда», «гибридная» и т. д.).
Общим для всех моделей инфляции является постулирование существования так называемого фундаментального скалярного поля. Постулирование — потому ни одного примера такого поля найдено пока не было (хотя кандидаты были и есть)2. Это тем более удивительно, что, в сущности, скалярное поле является наиболее простым из всех типов полей. Но, например, векторные и спинорные фундаментальные поля встречаются постоянно, а скалярное поле — нет.
На стадии инфляции данное фундаментальное скалярное поле обладает эффективным уравнением состояния, таким же (или очень близким), как вакуумное уравнение состояния, — как говорят, скалярное поле «имитирует» вакуум. Так как на данной стадии эволюции Вселенной никакого вещества еще нет и вся энергия «сидит» в скалярном поле — увеличение размеров Вселенной происходит по экспоненциальному закону (вспомнили модель де Ситтера? Вот она и пригодилась).
Как видим, проблема инфляции актуальна не только в земных финансах. Но для целей космологии она является безусловным благом, чего нельзя сказать о финансах, увы. — Примеч. авт.
Подчеркнем, речь идет именно о фундаментальных полях — типа электромагнитного и гравитационного поля, например. Просто скалярные поля являются вещью вполне обыденной, например, поле распределения температур. — Примеч. авт.
335
Кстати, так как нет вещества — нет и температуры. Да-да, плотности энергии огромны (до ю19 ГэВ), а температуры при этом — просто нет.