Инфляционная стадия очень короткая по времени, начинаясь примерно на ю-43 секунде, она идет где-то секунды до ю_з6-ю-з4 Но размеры Вселенной при этом увеличиваются в совершенно чудовищной степени, в зависимости от модели — до io4°00 раз (а в некоторых моделях — даже до ю10 раз).
Непредставимо огромные величины! И то, что мы привыкли называть «нашей Вселенной», оказывается на самом деле лишь ничтожной ее долей. Мы видим только тот ее участок, откуда успели дойти до нас световые лучи (причем не с самого начала, а с момента рекомбинации), но гораздо, гораздо, гораздо большая ее часть «таится во мраке».
Легко понять тогда, каким образом объясняются вышеописанные загадки теории нестанционарной Вселенной.
Проблема размеров Вселенной была решена несколькими строчками выше. Заодно была решена и проблема «отсутствия» монополей (гипотетических «частиц» — носителей магнитного «заряда», «южного» или «северного») и прочих так называемых космологических дефектов, мо1ущих возникать при фазовых переходах в начальные моменты жизни Вселенной. На стадии инфляции эти «дефекты» далеко разносит друг от друга, так что на всю видимую часть Вселенной их может приходиться всего две-три штуки.
Так как на стадии инфляции помимо «раздувания» размеров Вселенной происходит и рост первичных квантовых возмущений за счет эффекта параметрического резонанса (применительно к росту возмущений на стадии инфляции данная теория была разработана В.Н. Лукашем), то решение получила и эта проблема.
Решение проблемы горизонта тоже вполне очевидно. Ведь изначально малые причинно-связанные области на стадии инфляции были «раздуты» до величин, в любом случае превышающих видимый нами размер Вселенной. Таким образом, все участки
336
неба когда-то находились в причинно-следственной связи, и нет ничего удивительного в наблюдаемой изотропии реликтового
излучения.
Проблема плоскостности? Не менее элементарно. Так как мы видим лишь совершенно ничтожную долю всей Вселенной, то участок, доступный нашему наблюдению, практически никак не будет отличаться от плоского — какую бы величину при этом не имел «начальный» параметр плотности. Аналогично амеба не способна заподозрить шарообразность Земли — даже если бы амеба была способна размышлять.
Ну, а пресловутый Первоначальный Толчок с успехом обеспечили силы отталкивания на стадии инфляции.
В конце периода инфляции плотность энергии скалярного поля сильно падает, как говорят космологи — скалярное поле «скатывается» к минимуму своего потенциала. После чего вблизи данного минимума поле начинает совершать колебания, происходят сложные для популярного описания процессы нарушения когерентности возмущений поля и поле «распадается» на частицы.
Так как для фундаментального скалярного поля, «двигавшего» инфляцией, часто используется название «инфлатон», то данная стадия называется «распад инфлатона», а процессы рождения частиц — «процессами термализации». Ведь вместе с частицами появляется и температура, причем очень большая, — и начинается уже известная и даже привычная «горячая» стадия Большого Взрыва.
«Инфляционная Вселенная» — это был третий (и, пожалуй, последний на сегодняшний момент) грандиозный теоретический прорыв после «Нестационарной Вселенной» Фридмана и «Горячей Вселенной» Гамова. При этом число наблюдательных открытий сравнимого уровня, о которых мы рассказали, пока составляет всего две штуки — «разбегание галактик» Хаббла и реликтовое излучение Пензиаса и Вилсона. Но, надо пРизнать, наблюдатели не только «сравняли счет», но и по- Вели в нем.
337
Открытием, сравнявшим счет, стало долгожданное открытие анизотропии реликтового излучения. И слово «долгожданное» мы употребили не зря. Да, изотропия реликтового излучения действительно должна быть весьма высокой — это, как мы уже сказали, одно из главных свидетельств в пользу однородности и изотропности Вселенной на больших масштабах. Но реликтовое излучение не может быть совсем изотропным.
Почему?
Вернемся к не раз уже упомянутому моменту рекомбинации. До этого момента в непрозрачной плазме излучение и вещество были тесно «перемешаны», можно сказать — они «отслеживали» характеристики друг друга. После же момента рекомбинации излучение начало распространяться свободно, неся в себе «отпечаток» характеристик вещества, точнее — распределения его плотности.
А вещество обязано быть хоть слегка, да неоднородным, это мы знаем твердо. Ведь мы же имеем возможность наблюдать гравитационно-связанные объекты — те же галактики, «выросшие» из тех самых начальных неоднородностей?1 Чтобы такой гравитационно-связанный объект образовался, контраст плотности2 в данной области должен превысить величину порядка единицы (точные расчеты для граничного значения дают оценку в районе 1,7).