Читаем Вселенная. Вопросов больше, чем ответов полностью

Вопреки распространенному мифу, Галилео Галилей (1564- 1642) не изобретал телескопа. Узнав в 1609 году о том, что в Венецию попал экземпляр «голландской трубы», Галилей за­интересовался ею, и ему потребовались всего одни сутки, чтобы догадаться об ее устройстве и даже построить свой первый теле­скоп со всего-навсего трехкратным увеличением. Голландские же мастера Иоганн Липперсгей, Захарий Янсен и Якоб Метциус долго вели между собой спор о приоритете, пока наконец не вы­яснилось существование некой итальянской зрительной трубы 1590 года, по образцу которой были выполнены голландские модели. Таким образом, «следы» первого телескопа вернулись в Италию, но нельзя с полной достоверностью утверждать, что этот телескоп был первым. Оптическая схема его настолько про­ста, что могла быть реализована в глубокой древности, причем неоднократно и независимо. Еще древние римляне корректиро­вали свою близорукость или дальнозоркость линзами из хруста­ля или даже изумруда. Они же освоили производство довольно прозрачного стекла. Ничуть не отставал Восток, не испытавший в раннем Средневековье варваризации, отбросившей культу­ру Европы на столетия назад. В конце концов примитивная зрительная трубка в руках мавра из кинофильма «Робин Гуд — принц воров» может оказаться не такой уж фантастикой...

Но, как бы то ни было, Галилей первым направил зрительную трубу на небо — или, во всяком случае, оставил первые дошед­шие до нас записи о телескопических наблюдениях небесных светил, что, в общем-то, сводится к тому же. Крупнейший из по­строенных им инструментов имел объектив диаметром 4,5 см и давал зо-кратное увеличение. Сделанные Галилеем открытия (лунные горы, спутники Юпитера, пятна на Солнце, звездная природа Млечного Пути) поразили современников, вдохновив многочисленных последователей. С этого момента астрономия, занимавшаяся прежде изучением движения небесных тел, пере­шла к изучению их природы. Прежние умозрительные построе­ния стало возможно проверить наблюдениями, если не сейчас, то в будущем.

19

— Часть I —

Телескоп Галилея был построен по принципу трубки теа­трального бинокля — объектив из несильной положительной линзы собирал свет в фокус, перед которым в качестве окуляра была установлена короткофокусная отрицательная (рассеива­ющая) линза. Поле зрения такого телескопа было крайне мало, и вскоре Кеплер предложил заменить отрицательную окулярную линзу положительной, установленной за фокусом. Изображение получилось перевернутым, но астрономов это обстоятельство не смутило и не смущает до сих пор. В космосе нет ни верха, ни низа, а привычка рассматривать перевернутое изображение без чувства дискомфорта приобретается очень быстро.

Линзовые телескопы называются рефракторами. Как вам должно быть известно из курса физики для средней школы, по­казатель преломления стекла для световых волн разной длины различен: синие лучи преломляются сильнее красных. Для на­блюдения монохроматического источника света в этом нет боль­шой беды — проблема, однако, состоит в том, что космические источники посылают нам целый спектр всевозможных длин волн. В результате свет звезды фокусируется в радужный кружок вместо точки, а изображения протяженных объектов приобрета­ют неприятный цветной ореол — следствие хроматической абер­рации. Последняя чрезвычайно вредна для астрономических наблюдений — в частности, благодаря хроматизму своей трубы (вкупе с посредственным качеством линз) Галилей не сумел от­крыть кольца Сатурна, разглядев лишь какие-то «придатки» по бокам планетного диска и составив анаграмму: «Высочайшую планету тройною наблюдал».

В рефракторах, особенно однолинзовых, хроматизм неустра­ним в принципе. На первых порах относительно разумный вы­ход состоял лишь в удлинении трубы. Телескоп Яна Гевелия при очень скромном однолинзовом объективе диаметром всего 150 мм имел фокусное расстояние в 49 м! Ни о какой трубе не могло идти и речи — объектив помещался на верхушке высокой мачты и поворачивался при помощи длинных веревок, а наблю­

20

— Чем и как изучают Вселенную —

датель с окуляром в руках «ловил» изображение небесного тела. Как ни удивительно, при помощи таких инструментов в XVII веке были получены выдающиеся результаты.

Впоследствии, когда развитие оптического стекловарения позволило создавать вполне удовлетворительное стекло с за­данными свойствами, появился ахроматический рефрактор. Его объектив состоит из двух линз — положительной и отрица­тельной, выполненных из разных сортов стекла с различными показателями преломления. При этом хроматизм линз взаимно уничтожается — к сожалению, не полностью. Тем не менее ах­роматические рефракторы уже не столь чудовищно длинны, как их однолинзовые предшественники. Нормальным считается от­носительное фокусное расстояние (отношение диаметра объек­тива к его фокусному расстоянию), равное 1:15 или даже немного больше.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука