Читаем Вся физика в 15 уравнениях полностью

Большое удовольствие также получить посвящение в «современные» теории, такие как квантовая механика или теория относительности, созданные в начале XX в. Это было такое необыкновенное переживание — обнаружить, что материя ведет себя не так, как подсказывает наша интуиция, что элементарные частицы могут быть найдены везде, где угодно, в одно и то же время, и представить себя космическим путешественником, который стареет медленнее, чем его близнец-домосед!

Но будем справедливы: развитие технологий, промышленная революция и вызванное ими резкое изменение образа жизни явились результатами упорного труда двух предыдущих столетий. Паровой двигатель, ставший источником механической энергии, расчет стальных деталей для строительства мостов, зданий или кораблей, изобретение холодильника и двигателя внутреннего сгорания — все эти технические достижения не нуждались в возникновении квантовой механики. Так же как и химия, которую я признаю абсолютно необходимой, но не очень-то в ней разбираюсь…

Множество исследований было посвящено техническим, экономическим и социальным истокам промышленной революции XVIII–XIX вв. С точки зрения физика, поразительно, что эта революция не была вызвана радикальными изменениями в понимании строения материи. Атомы еще не были открыты, материя рассматривалась как гладкая и непрерывная. Она просто проявляла себя в трех различных состояниях: твердом, жидком и газообразном. Вода тому простейший пример.

С материей оказалось возможно связать некоторые интуитивные и некорректно определенные величины: температуру (горячее или холодное), твердость (твердое или мягкое), текучесть (жидкое или вязкое). С точки зрения физика, вся промышленная революция состояла только в том, чтобы лучше определить эти величины и параллельно применить к материи новую математику, открытую в работе Ньютона и Лейбница, а именно исчисление «вариаций», сегодня называемое «дифференциальным исчислением». Таким образом, не спрашивая «Что такое материя?», можно моделировать ее поведение с каждым разом все лучше и лучше, сначала в конкретных случаях, а затем и в общем виде, путем объединения различных моделей.

Упругий, как металл

Опять же, закон Гука — слишком наивная модель: невозможно представить себе более простую зависимость! Действительно, можно привести в качестве примера множество материалов, на которые закон Гука в его простейшей форме не распространяется: например, дерево, в котором появляются продольные трещины, если на него надавить, или камень, который крошится на осколки под сосредоточенной нагрузкой. Но, как и в случае с идеальными газами, природное «колесо фортуны» решило, что закон работает достаточно хорошо для большинства металлов. Мы говорим, что металлы обладают «упругостью»: если мы растягиваем железный брусок, его длина увеличивается пропорционально приложенной силе; если мы прекращаем тянуть, он возвращается к своей первоначальной длине, как пружина.

Признайтесь, звучит наивно, но, используя эту простую модель однородного материала и дифференциальное исчисление, можно предсказать, как стальная балка сложной формы изгибается под нагрузкой и какие силы возникают в структуре, состоящей из таких балок. И все, больше ничего не нужно, ну, почти ничего, чтобы построить Эйфелеву башню!

«Механическая сила огня»[14]

Дифференциальное исчисление нашло широкую область применения с возникновением и развитием в XIX в. новой науки: термодинамики. Отправной точкой стало изобретение парового двигателя, который мог обеспечить механическую мощность куда б0льшую, чем способны производить человек или животные и даже ветряные либо водяные мельницы. Кроме того, эта мощность может быть обеспечена в небольших или крупных масштабах, на ферме или на сталелитейном заводе и даже на движущемся объекте, например на борту паровоза или корабля.

За первые полвека преобразование тепловой энергии в механическую работу сделалось универсальным и необыкновенно разнообразным. Даже изобрели способ, при котором бы использовалась механическая работа для удаления тепла: нам дали холодильник! Затем применение нефтяного топлива в двигателях внутреннего сгорания еще больше увеличило тягу человека к машинам, вследствие чего сегодня все это сгоревшее горючее теперь находится в атмосфере в виде CO2

Тепло, движение, энергия

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже