И все же ОКТ – это квантовая механика, а не игра в классики. От момента t
1 до момента t2 не скачут дети, а развивается во времени волновая функция, и делает она это в соответствии с уравнением Шрёдингера. Волновая функция ничего не знает о свойствах, которые мы решили выделить в момент t2, и вовсе не собирается «приземляться в один из квадратов». Каркас – это то, что интересно нам, а волновая функция ведет себя так, как ей велит Шрёдингер. В результате имеется еще одно (и самое сложное в применении) условие, которое требуется от каждого каркаса: истории, нарисованные в данном каркасе (чисто логическая конструкция), должны оставаться полностью альтернативными, когда их «оживляют» с помощью уравнения Шрёдингера. Как это понимать? Снова посмотрим на историю ψC1B2A3, произвольно выбранную из приведенного выше каркаса. Вот что надо с ней сделать. Сначала с помощью уравнения Шрёдингера вычисляем, как развивается во времени начальная волновая функция ψ за время от момента t0 до t1. Из полученной волновой функции мы вырезаем кусок, который отвечает обладанию свойством C1. Для этого есть математическая процедура, определенная, по существу, тем, что каждое разбиение представляет собой «нарезку» всех мыслимых волновых функций на части, отвечающие выбранным свойствам. В результате получается какая-то новая волновая функция, которой мы снова даем развиваться во времени под управлением уравнения Шрёдингера до момента времени t2. Из получившейся волновой функции снова вырезаем часть, отвечающую свойству B2, а результат снова отдаем Шрёдингеру, чтобы с помощью его уравнения пройти эволюцию до момента времени t3. Потом, наконец, оставляем только ту часть волновой функции, которая отвечает свойству A3, – и запоминаем этот результат. Далее следует точно таким же образом поступить со всеми историями в имеющемся каркасе, а все полученные волновые функции запомнить (определенно придется записывать). И вот главное: требуется, чтобы никакие из полученных волновых функций не интерферировали друг с другом. Это условие, имеющее строгий математический смысл, означает, что волновые функции, получающиеся из различных историй, не должны нести дублирующую информацию; в данном случае «двойной учет» не должен приходить от более ранних моментов времени в силу того, как эволюционирует волновая функция. Такие «хорошие» истории называются основательными, и с ними только и следует иметь дело. Здесь наконец заканчивается раздел «Требования» из «Руководства пользователя» всей схемой ОКТ. Далее идут обещанные выгоды и преимущества.
Необходим полный набор основательных историй
Из уже проделанного упражнения с уравнением Шрёдингера и «нарезкой» волновых функций немедленно следует раздача вероятностей – для каждой истории! «Конечный продукт» ОКТ – вероятности не просто исходов в финальный момент времени, а вероятности историй
. Вероятность, что развитие событий случится в соответствии с выбранной историей, равна квадрату волновой функции, которую мы построили для этой истории[296]. «Основательность» историй требуется именно для того, чтобы можно было определить вероятность для каждой. При бросании, скажем, игральной кости неправильной формы с 24 гранями (разных площадей и с разными вероятностями выпадения) пространство событий состоит из 24 отчетливых исходов, в каждом из которых кость лежит на столе одной определенной гранью. Отсутствие интерференции между различными историями – это что-то вроде ясной отделенности граней друг от друга, запрет на плавные переходы между гранями, при наличии которых было бы не так просто сказать, какой же исход случился.