Прежде всего, «плюс» и «минус» – неудобные обозначения: как минимум необходимо дополнительно указывать номер пары, вроде +1, +2, +3 и аналогично с минусами. Никто так и не делает, а вместо этого три разных плюса называют «красный», «зеленый» и «синий», а слово «плюс» опускают. Отвечающие им минусы тогда получают названия «антикрасный», «антизеленый» и «антисиний». Это, разумеется, названия – у элементарных частиц никакого цвета не бывает. Тем не менее я не буду брать слово «цвет» в кавычки, которых и так уже много, и предлагаю просто помнить, что цвет – это указание на тип заряда по отношению к сильному ядерному взаимодействию. В природе таких типов зарядов оказалось три, причем (последний раз с кавычками) одна единица «красного» заряда, одна единица «зеленого» заряда и одна единица «синего» заряда вместе составляют нулевой заряд (отсутствие заряда). Даже не знаю, как были бы устроены электросети, если бы что-то похожее имело место для электрических зарядов.
Правило (закон природы, относящийся к зарядам сильного взаимодействия)
1 · (красный) + 1 · (зеленый) + 1 · (синий) = 0
легко запомнить, потому из-за физиологических особенностей человеческого зрения сложение красного, зеленого и синего света воспринимается как белый свет. Стоит только дополнительно договориться, что нейтральное (обладающее нулевым зарядом по отношению к сильному взаимодействию) называется бесцветным (или белым), как правило смешения цветов на мониторе «красный + зеленый + синий = бесцветный (белый)» окажется отличной мнемоникой для математического соотношения между зарядами сильного взаимодействия. Из-за этого практика именовать заряды красным, зеленым и синим очень быстро прижилась – настолько, что сам заряд сильного взаимодействия стали даже называть цветовым или цветным зарядом. Наряду с приведенным соотношением с равным успехом сумма трех противоположных («анти») цветов тоже дает нуль. И, как мы уже говорили, выполнено доброе старое правило 1 · (красный) + 1 · (антикрасный) = 0 (и еще два аналогичных равенства).
Каждый кварк, например может находиться в одном из трех цветовых состояний: это же относится и к кваркам из серой и темной мастей. Антикварки несут соответствующие антицвета: античастица к красному кварку – антикрасная и т. д. (в том, чтобы запоминать, что, скажем, дополнительный к синему цвет – желтый, большого смысла уже нет). Но в свободном состоянии – «по отдельности» – в природе могут существовать только бесцветные комбинации кварков, т. е. такие, где цвета в сумме дают нуль в соответствии со сформулированными правилами. Частицы, несущие цвет – ненулевой заряд сильного взаимодействия, не наблюдаются в природе поодиночке. Протон и нейтрон, а также все многочисленные короткоживущие частицы, которые можно собрать из кварков, должны быть бесцветными: их полный цветовой заряд должен быть равен нулю. Поэтому, когда мы говорим, что протон = нам надо дополнительно раздать по цвету на каждый из кварков таким образом, чтобы все вместе было бесцветным по правилу сложения трех цветов. В общем, цветные карты, представляющие кварки, оказываются немного шулерскими: их больше, чем кажется, и, я бы сказал, они мельтешат перед глазами так, что не все разглядишь: кварки непрерывно обмениваются цветами. В случае протона это «мельтешение» устроено так. Один из трех кварков, который мы временно снабдим меткой 1, может находиться в одном из цветовых состояний К[расный], З[еленый] или С[иний]; чтобы помнить, что это состояния «первого» кварка, обозначим их как |К⟩1, |З⟩1, |С⟩1, и аналогично поступим с двумя другими кварками; тогда математика, определяющая правила обращения с кварками, предписывает такое цветовое состояние трех кварков внутри протона:
И при этом каждый из кварков, обозначенных как 1, 2, 3, может быть u- или d-кварком (при условии, что всего имеются два u и один d), а кроме того, каждый может находиться в одном из двух спиновых состояний – в результате полная картина того, как три кварка складываются в протон, еще усложняется.
Вторая колода, с буквой B на рубашках, не содержит никаких мастей. Все частицы там – бозоны (рис. В.4). Они заняты тем, что переносят какое-то из известных взаимодействий. Важны для устройства Вселенной все они без исключения, но мы лучше всего знакомы с фотонами, причем не в роли переносчика взаимодействия, а просто в виде света. Переносчиками же взаимодействия, скажем, между двумя электронами работают не совсем настоящие, а виртуальные фотоны. Слово «виртуальный» часто опускают, но его всегда следует подразумевать, когда речь идет именно о передаче взаимодействий; виртуальные кванты (виртуальные фотоны, виртуальные электроны) – это возбуждения поля с несколько «непостоянным» статусом существования, и главное их отличие от настоящих квантов – отсутствие фиксированной массы. (В ваш фотоаппарат и на сетчатку глаза, наоборот, попадают вовсе не виртуальные, а «полноценные» фотоны; в атоме сидят «полноценные» электроны и т. д.)