Как показали тщательные исследования, проведенные в 1990-е гг., взрывающиеся звезды определенной разновидности, так называемые сверхновые типа Ia, обладают замечательным свойством: те из них, которые имеют бо́льшую светимость[10], светят дольше. Эмпирически эта зависимость прослеживается очень надежно, хотя теоретически мы еще не вполне понимаем, почему это так. А значит, такие сверхновые служат прекрасными «стандартными свечами». С их помощью можно калибровать расстояния, поскольку их светимость можно определить посредством измерения, которое не зависит от расстояния. Если мы обнаружили сверхновую такого типа в далекой галактике, – а это нам по силам, потому что они очень яркие, – то можно пронаблюдать, сколько времени она светится, и установить ее светимость. А тогда, измеряя ее видимую яркость с помощью телескопа, можно точно подсчитать, на каком расстоянии от нас находится и сама сверхновая, и ее галактика. Затем, измерив красное смещение света звезд в этой галактике, можно определить ее скорость, сравнить скорость движения галактики с расстоянием до нее и сделать вывод о темпе расширения Вселенной.
Замечательно, но, если сверхновые в отдельно взятой галактике взрываются только раз в 100 лет, каков шанс, что нам доведется это увидеть? Ведь последнюю сверхновую в нашей Галактике наблюдал еще Иоганн Кеплер в 1604 г.! Говорят, что сверхновые в нашей Галактике наблюдаются только при жизни великих астрономов, а Кеплер, безусловно, заслуживает такого звания.
Сначала Кеплер был простым учителем математики в Австрии, а затем стал помощником астронома Тихо Браге, который тоже – еще до Кеплера – наблюдал сверхновую в нашей Галактике и за это получил в дар от датского короля целый остров. На основании данных о положении планет, собранных Браге более чем за 10 лет, Кеплер в начале XVII в. вывел три своих знаменитых закона движения планет:
1. Планеты движутся вокруг Солнца по эллипсам.
2.
3. Квадрат
А эти законы, в свою очередь, почти 100 лет спустя легли в основу закона всемирного тяготения Ньютона. Но это не единственное замечательное достижение Кеплера: он еще и успешно защитил собственную мать от обвинений в колдовстве, и написал, возможно, первое в истории научно-фантастическое произведение – о путешествии на Луну.
В наши дни, чтобы увидеть сверхновую, надо просто посадить по аспиранту наблюдать за каждой галактикой в небе. Ведь в космических масштабах 100 лет – это период, не слишком сильно отличающийся от среднего времени написания диссертации, а аспиранты дешевы и многочисленны. Однако, к счастью, можно обойтись и без таких крайних мер – по очень простой причине: Вселенная стара и очень велика, а поэтому редкие события происходят в ней все время.
Так что отправляйтесь как-нибудь ночью на лесную поляну или в пустыню, где хорошо видно звезды, и поднимите руку к небу, соединив большой и указательный пальцы в кружок размером примерно с десятицентовик[11]. Нацельтесь на темный участок неба, где звезд вообще не видно. В достаточно большие телескопы, которыми сегодня пользуемся мы, астрономы на этом клочке неба могут различить около 100 000 галактик, и в любой из них – миллиарды звезд. А поскольку в каждой из этих галактик в среднем раз в 100 лет взрывается сверхновая, можно ожидать, что в каждую конкретную ночь на этом участке неба взорвется примерно три звезды.
Именно так астрономы и поступают. Они запрашивают время для работы на телескопе – и в какие-то ночи наблюдают одну сверхновую, в какие-то – две, а иногда погода стоит пасмурная и вообще ничего не видно.
Вот таким способом нескольким исследовательским группам удалось определить постоянную Хаббла с погрешностью менее 10 %. Новая величина – около 70 км/с для галактик, находящихся от нас на среднем расстоянии в 3 млн световых лет, – почти на порядок меньше, чем получилось у Хаббла и Хьюмасона. В результате мы делаем вывод, что возраст Вселенной ближе к 13 млрд лет, а вовсе не к 1,5 млрд лет.
Как я еще покажу, эта цифра полностью совпадает с независимыми оценками возраста самых старых звезд в нашей Галактике. Четыреста лет современной науки – от Браге до Кеплера, от Леметра до Эйнштейна и Хаббла, от спектров звезд до распространенности легких элементов – составили яркую, непротиворечивую картину расширяющейся Вселенной. Все сходится. Концепция Большого взрыва находится в отличной форме.
Глава 2
Сага о тайнах Вселенной: космос на вес