Поэтому определение количества темного вещества, а следовательно, общей плотности массы во Вселенной обещало дать ответ на извечный вопрос (а если и не извечный, то, по крайней мере, такой же древний, как поэт Т. С. Элиот): чем же кончится мир – взрывом или стоном? Сага об определении общего количества темного вещества насчитывает уже как минимум полвека, и о ней можно написать целую книгу – на самом деле я так и сделал, и книга называется «Квинтэссенция» (Quintessence). Но сейчас я продемонстрирую, что одна-единственная картинка действительно может стоить тысячи (а то и ста тысяч) слов, но сделаю это сначала все-таки словами и только потом – картинкой.
Самые крупные гравитационно связанные объекты во Вселенной называются
Поскольку сверхскопления так велики и массивны, почти все вещество во Вселенной входит в какое-нибудь скопление. А значит, если мы сумеем «взвесить» сверхскопления галактик, а затем оценить общую плотность таких сверхскоплений во Вселенной, то получим возможность «взвесить Вселенную» вместе с темным веществом. Сделав это, мы на основе уравнений ОТО определим, достаточно ли у нас вещества, чтобы Вселенная замкнулась.
Пока все неплохо, но как взвесить объекты с габаритами в десятки миллионов световых лет? Проще простого. У нас же есть гравитация.
В 1936 г. Альберт Эйнштейн по настоянию астронома-любителя Руди Мандла опубликовал в журнале
В то время нравы в научном сообществе были куда как мягче, и интересно читать, как неформально начинает Эйнштейн свою статью, опубликованную, между прочим, в авторитетном научном журнале: «Некоторое время тому назад меня навестил Р. Мандл и попросил опубликовать результаты небольшого расчета, который я провел по его просьбе. Уступая его желанию, я решил опубликовать эту заметку»[13]. Не исключено, что подобный задушевный тон не возбранялся одному только Эйнштейну, но мне приятнее полагать, что это просто продукт эпохи, когда научные результаты не всегда облекались в слова, недоступные пониманию простых смертных.
Так или иначе, то, что свет следует по искривленной траектории, если само пространство искривляется в присутствии вещества, стало первым значительным прогнозом ОТО и открытием, которое, как я уже упоминал, принесло Эйнштейну международную славу. Поэтому, возможно, не стоит удивляться, что (как было недавно обнаружено) еще в 1912 г., то есть задолго до того, как Эйнштейн завершил работу над ОТО, он пытался найти какое-то наблюдаемое явление, которое убедило бы астрономов в правоте его теории, и проделал практически те же вычисления, что были изложены по просьбе мистера Мандла в статье 1936 г. Быть может, тогда, в 1912 г., он не стал публиковать свои расчеты, потому что пришел к тому же выводу, что и в статье 1936 г.: «Конечно, нельзя надеяться на то, что удастся прямо наблюдать это явление». Более того, изучая его записные книжки обоих периодов, нельзя сказать с уверенностью, что он вообще помнил, что 24 года назад занимался теми же расчетами.
Зато в обоих случаях он прекрасно понимал, что искривление света в гравитационном поле может означать, что если яркий объект расположен далеко позади большой массы, то свет, идущий от него разными путями, может огибать этот массивный объект и сходиться снова, в точности как при прохождении сквозь обычную линзу, и тогда либо первоначальный объект окажется увеличен, либо получится несколько копий его изображения, причем некоторые из них будут искажены (см. рисунок на следующей странице).
Когда Эйнштейн вычислил ожидаемый эффект от линзирования далекой звезды другой звездой, расположенной в промежутке, эффект оказался очень мал и представлялся совершенно неизмеримым. Поэтому-то Эйнштейн и сделал в статье оговорку о том, что такое явление едва ли удастся когда-нибудь пронаблюдать. В результате Эйнштейн заключил, что его статья не имеет особой практической ценности. Вот как он писал об этом редактору