Читаем Введение в электронику полностью

Когда катушку индуктивности и конденсатор соединяют параллельно, они образуют цепь, называемую колебательным контуром. При возбуждении колебательного контура внешним источником постоянного тока, в нем возникают колебания; это означает, что в нем начинает течь переменный ток. Вследствие большого сопротивления цепи, колебания в колебательном контуре могут не возникнуть, так как сопротивление колебательного контура поглощает энергию тока и колебания в цепи затухают.

Для поддерживания колебаний в колебательном контуре рассеянную энергию необходимо восполнить. Это восполнение энергии осуществляется с помощью положительной обратной связи. Положительная обратная связь — это подача в колебательный контур части выходного сигнала для поддержки колебаний. Сигнал обратной связи должен быть в фазе с сигналом в колебательном контуре.

На рис. 29-1 изображена блок-схема генератора.

Рис. 29-1.Блок-схема генератора.

Структурное устройство генератора можно разбить на три части. Частотозадающей цепью генератора обычно является LC колебательный контур. Усилитель увеличивает амплитуду выходного сигнала колебательного контура. Цепь обратной связи подает необходимое количество энергии в колебательный контур для поддержки колебаний. Генератор — это схема с обратной связью, использующая постоянный ток для получения колебаний переменного тока.

29-1. Вопросы

1. Что такое генератор?

2. Как работает колебательный контур?

3. Что надо сделать для поддержания колебаний в колебательном контуре?

4. Нарисуйте блок-схему генератора.

5. Каковы функции основных частей генератора?

29-2. ГЕНЕРАТОРЫ СИНУСОИДАЛЬНЫХ КОЛЕБАНИЙ

Генераторы синусоидальных колебаний — это генераторы, вырабатывающие напряжение синусоидальной формы. Они классифицируются согласно их частотозадающим компонентам. Тремя основными типами генераторов синусоидальных колебаний являются LC генераторы, кварцевые генераторы и RC генераторы.

LC генераторы используют колебательный контур из конденсатора и катушки индуктивности, соединенных либо параллельно, либо последовательно, параметры контура определяют частоту колебаний. Кварцевые генераторы подобны LC генераторам, но обеспечивают более высокую стабильность колебаний. LC генераторы и кварцевые генераторы используются в диапазоне радиочастот. Они не подходят для применения на низких частотах. Для применения на этих частотах используются RC генераторы, имеющие резистивно-емкостную цепь для задания частоты колебаний.

Тремя основными типами LC генераторов являются генератор Хартли, генератор Колпитца и генератор Клаппа.

На рис. 29-2 и 29-3 изображены два основных типа генератора Хартли. Катушка с отводом в колебательном контуре указывает, что эти цепи являются генераторами Хартли. Недостатком генератора Хартли с последовательной обратной связью (рис. 29-2) является то, что через часть колебательного контура течет постоянный ток. В генераторе Хартли с параллельной обратной связью постоянный ток в колебательный контур не поступает, так как в цепь обратной связи включен конденсатор.

Рис. 29-2.Генератор Хартли с последовательной обратной связью.

Рис. 29-3.Генератор Хартли с параллельной обратной связью.

Генератор Колпитца (рис. 29-4) похож на генератор Хартли с параллельной обратной связью, за исключением того, что катушка с отводом заменена двумя конденсаторами. Генератор Колпитца стабильнее, чем генератор Хартли и чаще используется.

Рис. 29-4. Генератор Колпитца.

Генератор Клаппа (рис. 29-5) является разновидностью генератора Колпитца. Основным отличием является добавление конденсатора, включенного последовательно с индуктивностью в колебательный контур. Этот конденсатор позволяет изменять частоту генератора.

Рис. 29-5. Генератор Клаппа.

Изменения температуры, старение компонентов и изменение требований к нагрузке служит причиной нестабильности генераторов. Если требуется высокая стабильность параметров генерируемого сигнала, используются кварцевые генераторы.

Кварц — это материал, преобразовывающий механическую энергию в электрическую, когда к нему прикладывают давление, и электрическую энергию в механическую, под воздействием напряжения. Когда к кристаллу кварца приложено переменное напряжение, кристалл начинает растягиваться и сжиматься, создавая механические колебания, частота которых соответствует частоте переменного напряжения.

Перейти на страницу:

Все книги серии Учебники и учебные пособия

Введение в электронику
Введение в электронику

Книга известного американского специалиста в простой и доступной форме знакомит с основами современной электроники. Основная ее цель — теоретически подготовить будущих специалистов — электриков и электронщиков — к практической работе, поэтому кроме детального изложения принципов работы измерительных и полупроводниковых приборов, интегральных микросхем рассмотрены общие вопросы физики диэлектриков и полупроводников. Обсуждение общих принципов микроэлектроники, описание алгоритмов цифровой обработки информации сопровождается примерами практической реализации устройств цифровой обработки сигналов, описаны принципы действия и устройство компьютера. Книга снабжена большим количеством примеров, задач и упражнений, выполнение которых помогает пониманию и усвоению материала. Предназначена для учащихся старших курсов средних специальных учебных заведений радиотехнического профиля, а также будет полезна самостоятельно изучающим основы электроники.

Эрл Д. Гейтс

Радиоэлектроника

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника