Читаем Введение в электронику полностью

На рис. 29–13 изображен мостовой генератор Вина на интегральной микросхеме. Инвертирующий и неинвертирующий входы операционного усилителя идеальны для использования в генераторе на основе моста Вина. Усиление операционного усилителя высокое, что компенсирует все потери в цепи.

Рис. 29–13. Генератор на основе моста Вина на интегральной микросхеме.

29-2. Вопросы

1. Каковы три типа генераторов синусоидальных колебаний?

2. Нарисуйте схемы трех типов LC генератора.

3. Чем отличается генератор Колпитца от генератора Хартли?

4. Как можно улучшить стабильность LC генератора?

5. Каковы два типа RC генераторов, используемых для получения синусоидальных колебаний?

29-3. ГЕНЕРАТОРЫ НЕСИНУСОИДАЛЬНЫХ КОЛЕБАНИЙ

Генераторы несинусоидальных колебаний генерируют несинусоидальные колебания. Это не какая-то особая форма колебаний. Несинусоидальные колебания могут иметь прямоугольную, пилообразную или треугольную форму или комбинацию этих форм. Общей характеристикой для всех генераторов несинусоидальных колебаний является то, что все они — релаксационные генераторы. Релаксационный генератор запасает энергию в реактивной компоненте в течение одной фазы цикла колебаний и постепенно отдает ее в течение релаксационной фазы цикла.

Релаксационными генераторами являются блокинг-генераторы и мультивибраторы. На рис. 29–14 изображена схема блокинг-генератора.

Рис 29–14. Блокинг-генератор.

Причиной названия является то, что транзистор легко переводится в режим блокирования (запирания). Условие блокирования определяется разрядом конденсатора C1. Конденсатор C1 заряжается через переход эмиттер-база транзистора Q1. Однако когда конденсатор C1 заряжен, у него есть только один путь разряда — через резистор R1. Величина постоянной времени RC цепочки из резистора и конденсатора С1, устанавливает, как долго транзистор будет заперт (блокирован), а также определяет частоту колебаний. Большая постоянная времени соответствует низкой частоте, а маленькая постоянная времени — высокой частоте.

Если выходное напряжение взять с RC цепочки в эмиттерной цепи транзистора, то оно будет иметь пилообразную форму (рис. 29–15).

Рис. 29–15. Напряжение пилообразной формы, генерируемое блокинг-генератором.

RC цепочка определяет частоту колебаний и создает пилообразное напряжение. На транзистор подано напряжение смещения в прямом направлении через резистор R1. Как только транзистор Q1 начинает проводить, конденсатор С1 быстро заряжается. Положительный потенциал на верхней обкладке конденсатора С1 смещает эмиттерный переход в обратном направлении, запирая транзистор Q1. Конденсатор С1 разряжается через резистор R2, образуя задний фронт пилообразного импульса. Когда конденсатор С1 разряжается, транзистор опять смещается в прямом направлении и начинает проводить, повторяя процесс.

Конденсатор С1 и резистор R2 определяют частоту колебаний. Сделав резистор R2 переменным, можно изменять частоту колебаний. Если резистор R2 имеет высокое сопротивление, постоянная времени RC цепочки велика и частота колебаний низка. Если резистор R2 имеет низкое сопротивление, постоянная времени RC цепочки уменьшится и частота колебаний возрастет.

Мультивибратор — это релаксационный генератор, который может находиться в одном из двух временно стабильных состояний, и быстро переключаться из одного состояния в другое.

На рис. 29–16 изображена основная схема автоколебательного мультивибратора.

Рис. 29–16.Автоколебательный мультивибратор.

Основой генератора являются два каскада, связанные между собой таким образом, что на вход каждого каскада подается сигнал с выхода другого каскада. Когда один каскад открыт, другой заперт до тех пор, пока эти условия не поменяются местами. Цепь самовозбуждается благодаря наличию положительной обратной связи.

Частота колебаний определяется параметрами цепи связи.

Астабильный мультивибратор является разновидностью автоколебательных мультивибраторов. Астабильный мультивибратор вырабатывает прямоугольные импульсы. Изменением постоянной времени RC цепочки цепей связи можно получить прямоугольные импульсы любой желаемой ширины. Изменением значений резистора и конденсатора может быть изменена рабочая частота. Стабильность частоты мультивибратора выше, чем у типового блокинг-генератора.

Перейти на страницу:

Все книги серии Учебники и учебные пособия

Введение в электронику
Введение в электронику

Книга известного американского специалиста в простой и доступной форме знакомит с основами современной электроники. Основная ее цель — теоретически подготовить будущих специалистов — электриков и электронщиков — к практической работе, поэтому кроме детального изложения принципов работы измерительных и полупроводниковых приборов, интегральных микросхем рассмотрены общие вопросы физики диэлектриков и полупроводников. Обсуждение общих принципов микроэлектроники, описание алгоритмов цифровой обработки информации сопровождается примерами практической реализации устройств цифровой обработки сигналов, описаны принципы действия и устройство компьютера. Книга снабжена большим количеством примеров, задач и упражнений, выполнение которых помогает пониманию и усвоению материала. Предназначена для учащихся старших курсов средних специальных учебных заведений радиотехнического профиля, а также будет полезна самостоятельно изучающим основы электроники.

Эрл Д. Гейтс

Радиоэлектроника

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника