Третьей важной функцией символов является ясное и краткое проявление формы суждений. Данная функция давно используется в математике. Так, в качестве элементарного примера можно рассмотреть различие в форме между «4х2 = 5х – 1» и «4х3 = 5х2 – 1» и тождество форм между «х + 4– у = 1» и «4х = Зу», которые можно усмотреть при первом же поверхностном взгляде. В первой паре уравнений одно является квадратным, а другое – кубическим, оба уравнения из второй пары являются линейными. Если бы подобные уравнения формулировались словами, то людям было бы не под силу осуществлять длинные цепочки умозаключений. Так, описание уравнений Максвелла в словах заняло бы несколько страниц, что укрыло бы существенные отношения между различными элементами. Адекватно введенные символы проясняют то, что является постоянным и неизменным в суждении, и то, что является лишь переменной. Неизменные свойства являются формой, или структурой, суждения.
Четвертое и значительное преимущество подобных символов – это их функция, сокращающая физические и мысленные усилия. Когда выработаны символы, многое из того, что ранее требовало концентрации и внимания, выполняется механически. Зачастую символьная запись подсказывает выводы, которые при обычных условиях не были бы замечены исследователем. Открытие отрицательных и мнимых чисел, введение
Максвеллом электрического смещения и последующее открытие эфирных волн стали прямым следствием указанного свойства символов. Именно по этой причине иногда говорится, что «при расчетах перо кажется умнее своего пользователя». Важность специально построенных символов с очевидностью проявляется именно в этой возможности использовать их в качестве исчисления.
§ 5. Исчисление классов
Развитие адекватной символьной записи наряду с открытием формальных свойств отношений позволили обобщить традиционную логику, равно как и получить мощное исчисление.
Например, операции сложения, умножения и т. д. в математических науках могут рассматриваться в терминах теории отношений. Так, операция сложения основывается на трехместном отношении. Отношение а + Ь = с связывает два слагаемых, а и Ь, с с. Данное отношение является много-однозначным, поскольку любой паре слагаемых соответствует одна, и только одна, сумма, тогда как одной сумме соответствует неопределенное число пар слагаемых. Однако если сумма и одно из слагаемых зафиксированы, то другое слагаемое однозначно определимо. Подобные трехместные отношения, присутствующие в различных видах операций, можно изучать и более подробно.
Однако нет необходимости в том, чтобы этими операциями были только обычные алгебраические операции. Операции, в целом относящиеся к типу неколичественных, были выработаны для сочетания классов, рассмотренных с их объемами.
Ниже мы предлагаем краткое описание общей теории классов суждений, которое хотелось бы предварить советом, взятым из работ Доджсона: «Если вы не поняли определенный отрывок, перечитайте его заново. Если он все равно остался непонятным, перечитайте его заново. Если, прочитав отрывок три раза, вы не достигли понимания, то, скорее всего, ваш мозг начал уставать. В этом случае отложите книгу и займитесь другими делами, а на следующий день, когда вы прочтете его свежим взглядом, он наверняка покажется вам вполне легким для понимания».
Из истории символической логики известно, что сначала была разработана теория классов, поскольку было изначально замечено, что аристотелевскую логику можно рассматривать как дисциплину, имеющую дело с взаимосвязями между классами. Однако при систематическом изложении принципов логики логика классов не занимает первого места относительно других принципов. Утверждать, что два класса находятся друг к другу в определенном отношении, означает утверждать определенное суждение. Любое исследование в рамках теории классов использует принципы теории суждений. Поэтому теория суждений предшествует любому другому исследованию в области логики и должна быть разработана в первую очередь. Однако в столь элементарном обсуждении, каким является наше исследование, данным обстоятельством можно пренебречь, поскольку наша основная цель заключается в том, чтобы указать на то направление, в котором может быть расширена традиционная логика, а не в том, чтобы предложить систематический анализ обобщенной логической теории. Поэтому ничего страшного не произойдет, если мы, изменив логическому порядку, проследим за хронологической последовательностью в разработке данных логических принципов.