Читаем Введение в логику и научный метод полностью

Проиллюстрировать данный принцип можно следующим образом: класс индивидов, являющихся одновременно немцами и музыкантами, это то же самое, что и класс индивидов, являющихся одновременно музыкантами и немцами; класс индивидов, являющихся немцами или музыкантами, это то же самое, что и класс индивидов, являющихся музыкантами или немцами.


5.  Принцип ассоциации :

( ab ) c = a ( bc ),

( a + b ) + c = a + ( b + c ).


6.  Принцип дистрибуции :

( a + b ) c = ac + bc ,

ab + c = ( a + c ) ( b + c ).


В первой строчке выражен аналог хорошо известного свойства обычных чисел. Во второй же вводится значимое различие между предлагаемой алгеброй и ее обычным (вычислительным) видом.

7.  Принцип тавтологии :

aa = a ,

a + a = a .

Эти два принципа заключают в себе радикальное различие между обычной (вычислительной) алгеброй и той, что предлагается здесь.


8.  Принцип поглощения :

a + ab = a ,

a ( a + b ) = a .


9.  Принцип упрощения :

ab < a,

a < a + b .


Из последних двух принципов следует, что нуль-класс включен в любой класс (0 < а) и что любой класс включен в универсум (а < 1). Чтобы наглядно в этом убедиться, нужно всего лишь допустить, что Ь = 0 в первом выражении и что Ь = 1 во втором выражении.

10.  Принцип композиции :

[( a < b ) . ( c < d )] ( ac bd )

[( a < b ) . ( c < d )] [( a + c ) < ( b + d )].


Здесь мы, как обычно, используем символ «» для обозначения отношения импликации и точку («.») для обозначения совместного утверждения обоих суждений. Первое выражение читается так: «Если а включен в b и с включен в d , то логическое произведение а и с включено в логическое произведение b и d .

11.  Принцип силлогизма :

[( a < b ) . ( b < c )] ( a < c ).

Если а включен в Ь и Ь включен в с, то а включен в с. Отношение «включен в» тем самым задается как транзитивное.

Выражение традиционных категорических суждений

Теперь выразим символически каждый из четырех видов категорических суждений.

Суждение «все а суть b» может быть выражено как «(а < b)». Более того, можно показать, что эта запись эквивалентна записи «(аb = 0)». Поэтому мы получаем: «(а <

) (

= 0)».


Суждение «ни один а не есть b» эквивалентно суждению «все а суть не-». Следовательно, символически эта запись может быть выражена как «(a <

)». Однако данное выражение эквивалентно выражению «(ab = 0)», так что можно получить и следующую запись: «(a <

) (ab = 0)».


Частные суждения противоречат общим, и поэтому в них отрицается то, что утверждается в общих. Поэтому в суждении «некоторые а суть Ь» отрицается то, что ни один а не есть Ь (символически: a <

). Это обстоятельство может быть выражено как «(a <

)'» или как «(ab /= 0).


Суждение «некоторые а не суть b» должно противоречить суждению (а < b). Следовательно, его можно выразить как «(a < b)'» или как «(

/= 0)».


Каждая из этих четырех символических форм должна быть знакома читателю по проведенному ранее анализу категорических суждений.

Доказательство теоремы де Моргана В рамках данной книги мы не можем развить исчисление классов, с тем чтобы показать его огромные возможности. Однако мы хотели бы проиллюстрировать природу доказательства в этом исчислении, предложив демонстрацию теоремы де Моргана применительно к классам.


Нам нужно найти дополнение к классу (a + Ь).

В силу принципа исключенного третьего a + 

= 1 и Ь + 

= 1. Также, согласно принципу упрощения, 1x1 = 1 и   (а +

) (Ь +

) = 1. Используя принципы дистрибуции и ассоциации, вышесказанное можно записать так: (ab + 

+

) + (

) = 1.


Теперь рассмотрим классы (ab + 

+

) и (

). Они исчерпывают универсум, поскольку их сумма равняется 1; они также являются взаимоисключающими, поскольку их произведение равняется 0. Поэтому любой из них является дополнением другого.


Однако, согласно принципу тавтологии, ab + 

= ab + 

+ ab. Правая часть, по принципу дистрибуции, равна а (Ь +

) + Ь (а +

) = а + Ь. Следовательно, поскольку (

) является дополнением к (ab + 

+

), который, в свою очередь, равен (а + Ь), то, значит, (

) также равен и (а + Ь).


Следовательно, мы получаем (

) = (

), что является одной из форм теоремы де Моргана.


Теперь попробуем получить дополнение к ab.

Используя аргумент, тождественный только что приведенному, (ab) и (

+

) являются дополнениями друг к другу. Также мы имеем:


Следовательно, (

) = 

+


. Это вторая форма теоремы де Моргана. Эти результаты могут быть обобщены для любого конечного числа классов. Так:


и

§ 6. Исчисление суждений

Исчисление суждений изначально разрабатывалось как еще одна интерпретация символов, применяемых в теории классов. В определенной мере оба эти исчисления обладают тождественной формальной структурой, и каждое суждение в теории классов обладает соответствующим ему суждением в теории суждений, которое можно получить, используя подходящую интерпретацию. Приведенная ниже таблица может быть использована в качестве словаря для перевода теорем исчисления классов в теоремы исчисления суждений:


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже