Читаем Введение в логику и научный метод полностью

Однако мы пока еще недостаточно убедились в том, что числа, приписываемые подобным образом предметам, обладают всеми своими известными значениями. Мы показали, что вес, в отличие от тяжести, является суммируемым свойством. Нам нужно также показать, что числа, приписываемые весам, совместимы с самими собой, и сделать это придется опять с помощью эксперимента. Мы должны убедиться в том, что мы не допускаем ситуации, когда различные числа приписываются одним и тем же весам. Так, предположим, вес определенного объекта А рассматривается как определенная единица измерения или 1, и что мы с помощью этого процесса можем приписывать веса другим объектам так, что А2 будет обладать весом 2, А4 – весом 4, а А6 – весом 6. Можем ли мы быть уверены в том, что А2 и А4, будучи размещенными на одной стороне весов, окажутся на том же уровне, что и А6, если его поместить на противоположную сторону? Очень важно отметить, что мы не можем быть уверены в этом до тех пор, пока мы не проведем соответствующего эксперимента. Суждение о том, что 2 + 4 = 6, может быть доказано чисто арифметически без какого-либо эксперимента. Однако до тех пор, пока мы не проведем соответствующих экспериментов, мы не можем быть уверены в том, что физическая операция сложения весов согласуется с известными свойствами чисто арифметического сложения. Физическая операция сложения весов обладает обычными формальными свойствами арифметического сложения только в некоторых случаях, а не во всех: рычажные весы должны быть правильно сконструированы, стороны рычага должны быть одинаковой длины и т. д.

Метод измерения весов может использоваться также и для измерения других свойств. Длины, временные интервалы, площади, углы, электрический ток, электрическое сопротивление – все это может быть измерено сходным образом. Эти свойства являются суммируемыми: совмещая два объекта, обладающих одним и тем же свойством, мы получаем объект с увеличенной степенью этого свойства. Суммируемые свойства часто называются экстенсивными. Их можно измерять в соответствии с процессами, рассмотренными в данном параграфе. Такое измерение мы будем называть фундаментальным.

§ 5. Формальные условия измерения

На данном этапе мы можем абстрактно сформулировать условия для измерения. Минимальные требования для использования чисел для измерения (в самом широком смысле этого слова) качественных различий представлены в первых двух условиях:

1. Если дан набор из n предметов, В1, В2… Вп, то мы должны расставить их в последовательность относительно данного качества так, чтобы между любыми двумя предметами имело место одно, и только одно, из следующих отношений: (a) Bi > Bj, (b) Bi < Bj (с) Bi = Bj. Знак «>» и обратный ему знак «<» обозначают отношение, на основе которого предметы могут выделяться как отличающиеся по степени изучаемого качества. Отношение > должно быть асимметричным.

2. Если Bi > Bj и Bj > Вк, то Bi > Вк. Это условие выражает транзитивность рассматриваемого отношения.

Данные два условия достаточны для измерения интенсивных качеств, таких, как температура или плотность. Они являются необходимыми, однако недостаточными для экстенсивного измерения. Для экстенсивного измерения нам нужен некоторый физический процесс сложения, обозначаемый знаком «+». Необходимо также экспериментально показать, что этот процесс обладает следующими формальными свойствами:

3. Если Ве + Bf= Вg, то Bf+Be = Вg.

4. Если Bi = Вi, то Bi + Bj > Вi ′.

5. Если Bi = Вi и Bj = Вi ′, то Bi + Bj = Вi ′+ Вj ′.

6. (Bi + Bj) + Bk = Bi + (Bj + Bk).

Измерение в строгом смысле возможно, только если выполнены все эти условия. Когда выполнены только первые два условия, бессмысленно делать утверждения, имплицирующие соблюдение всех шести условий. Когда мы утверждаем, что IQ одного человека равняется 150, а другого – 75, то все, что мы можем иметь в виду, – только то, что на определенной шкале для измерения интеллекта (требующей наличия специализированных способностей) один человек располагается «выше» другого. Бессмысленно говорить, что первый человек в два раза умнее или в два раза более развитый, чем другой, потому что не было открыто ни одной операции по сложению ума или развития, которая бы согласовывалась с последними четырьмя условиями, необходимыми для того, чтобы соответствующее утверждение было осмысленным.

§ 6. Количественные законы и производное измерение

Перейти на страницу:

Похожие книги

Молодой Маркс
Молодой Маркс

Удостоена Государственной премии СССР за 1983 год в составе цикла исследований формирования и развития философского учения К. Маркса.* * *Книга доктора философских наук Н.И. Лапина знакомит читателя с жизнью и творчеством молодого Маркса, рассказывает о развитии его мировоззрения от идеализма к материализму и от революционного демократизма к коммунизму. Раскрывая сложную духовную эволюцию Маркса, автор показывает, что основным ее стимулом были связь теоретических взглядов мыслителя с политической практикой, соединение критики старого мира с борьбой за его переустройство. В этой связи освещаются и вопросы идейной борьбы вокруг наследия молодого Маркса.Третье издание книги (второе выходило в 1976 г. и удостоено Государственной премии СССР) дополнено материалами, учитывающими новые публикации произведений основоположников марксизма.Книга рассчитана на всех, кто изучает марксистско-ленинскую философию.

Николай Иванович Лапин

Философия
Социология искусства. Хрестоматия
Социология искусства. Хрестоматия

Хрестоматия является приложением к учебному пособию «Эстетика и теория искусства ХХ века». Структура хрестоматии состоит из трех разделов. Первый составлен из текстов, которые являются репрезентативными для традиционного в эстетической и теоретической мысли направления – философии искусства. Второй раздел представляет теоретические концепции искусства, возникшие в границах смежных с эстетикой и искусствознанием дисциплин. Для третьего раздела отобраны работы по теории искусства, позволяющие представить, как она развивалась не только в границах философии и эксплицитной эстетики, но и в границах искусствознания.Хрестоматия, как и учебное пособие под тем же названием, предназначена для студентов различных специальностей гуманитарного профиля.

Владимир Сергеевич Жидков , В. С. Жидков , Коллектив авторов , Т. А. Клявина , Татьяна Алексеевна Клявина

Культурология / Философия / Образование и наука