Читаем Высотные здания Москвы полностью

Устанавливать стоймя отдельные облицовочные блоки и камни, где-то на высоте нескольких десятков метров, выверять положение каждого блока и плоскость всей облицованной поверхности значительно труднее, чем выкладывать из них плоскость плашмя на земле, на гладкой, специально подготовленной площадке. Эти соображения и положены в основу сборной крупнопанельной облицовки высотных зданий.

Внизу, на строительной площадке, строго горизонтально уложена с большой точностью изготовленная металлическая форма будущей панели. На гладкое днище этой формы лицевой поверхностью вниз укладываются керамические блоки, поверх которых накладывается арматурная сетка. Форма заливается бетоном. «Склеивая» уложенные блоки между собой, бетон в то же время создает для них как бы общую «подкладку» - основу. Если собранный, отформованный таким образом и отвердевший элемент извлечь из формы и поставить стоймя, то мы увидим перед собой большую монолитную панель, облицованную гладкой поверхностью идеально пригнанных один к другому блоков, разделенных или, вернее, соединенных лишь очень тонкими швами. С изнанки же панель имеет общий прочный железобетонный «подкладочный» слой.

Такие крупные панели весом в 5 тонн нашли применение в облицовочных работах на строительстве Московского университета и частично здания у Красных ворот. Задача механизации облицовочных работ получила полное и новое решение. Рабочим не приходилось где-то на высоте многих этажей брать в руки каждый от дельный блок и укладывать его, тщательно подгоняя к. плоскости ранее уложенных блоков. Когда внизу, на полигоне или на заводе, бетон облицовочной панели набирал необходимую прочность, панель доставляли под монтажный кран, который захватывал ее своим крюком и поднимал наверх. А наверху оставалось лишь «приставить» панель к стене, залить небольшое пространство между ними раствором и получить таким образом стену, монолитно связанную с облицовкой. Участок стены высотой в целый этаж оказывался в один монтажный прием полностью готовым, облицованным фасадными керамическими блоками.

Но и в этом, казалось бы, таком высокосовершенном индустриальном способе изготовления облицовочных панелей строители-новаторы нашли серьезный недостаток. Заключается он в том, что панель, будучи отформована, слишком долго твердеет, и строителям приходится выжидать, пока она наберет нужную прочность. Это не только замедляет темпы строительства, но и не позволяет быстро освободить и использовать металлические формы для изготовления других панелей.

Научные работники предложили способ так называемого вибровакуумирования, который позволил полностью и успешно решить и эту задачу.

В чем заключается сущность вибрирования?

Эту сущность знает любая домашняя хозяйка. Когда она насыпает в кулек крупу, сахарный песок и т. п. и убеждается в том, что вся крупа или весь песок в пакет не входит, она постукивает, похлопывает, трясет кулек и обнаруживает, что его вместимость на глазах становится большей. Почему это происходит? Да потому, что под влиянием этих похлопываний и потрясываний, или, как говорят в технике, под влиянием вибрирования, отдельные крупинки или песчинки приходят в движение и, сами выискивая себе свободное местечко, укладываются теснее, плотнее.

То же самое происходит и при вибрировании бетона. Как только специальные вибраторы начинают «потряхивать» бетонную массу (а это вызывает в ней несколько тысяч колебательных движений в минуту), то не только куски щебня и песчинки, но и малейшие частицы цемента приходят в частое колебательное движение. Они вытесняют из массы воду и воздух и укладываются, плотно прилегая одна к другой. Полученная таким образом уплотненная масса обладает большей прочностью, чем пластичная, непровибрированная.

А в чем сущность вакуумирования? [1]

[1 Вакуум - разреженное состояние газов, воздуха. Имея более низкое давление, чем окружающая атмосфера, вакуумированное пространство способно как бы всасывать в себя вещества из окружающей среды, находящейся под более высоким давлением.]

Как известно, бетонная масса состоит из цемента, щебня и песка, замешанных водой. Вода в бетонной массе выполняет двойную роль. Прежде всего, она необходима для химической реакции: вступая в химическую реакцию с цементом, вода превращает всю массу в окаменелый массив, где воды мы уже не найдем; она, как говорят, химически связана. При затворении бетонной массы такой воды надо сравнительно немного.

Значительно больше воды требуется для того, чтобы придать бетону пластичность, удобоукладываемость, чтобы до затвердения он разлился по форме, «послушно» заполнил ее и принял те очертания, которые нужны строителю. Ясно, что вода, вносимая в массу для обеспечения ее удобоукладываемости, выполняет свою роль очень недолго - только во время формовки, а в дальнейшем она становится не только ненужной, но даже вредной: она мешает бетону быстро твердеть и наращивать свою прочность, да и после высыхания она оставляет в теле бетона поры, уменьшающие его прочность.

Перейти на страницу:

Похожие книги

Эволюция архитектуры османской мечети
Эволюция архитектуры османской мечети

В книге, являющейся продолжением изданной в 2017 г. монографии «Анатолийская мечеть XI–XV вв.», подробно рассматривается архитектура мусульманских культовых зданий Османской империи с XIV по начало XX в. Особое внимание уделено сложению и развитию архитектурного типа «большой османской мечети», ставшей своеобразной «визитной карточкой» всей османской культуры. Анализируются место мастерской зодчего Синана в истории османского и мусульманского культового зодчества в целом, адаптация османской архитектурой XVIII–XIX вв. европейских образцов, поиски национального стиля в строительной практике последних десятилетий существования Османского государства. Многие рассмотренные памятники привлекаются к исследованию истории османской культовой архитектуры впервые.Книга адресована историкам архитектуры и изобразительного искусства, востоковедам, исследователям культуры исламской цивилизации, читателям, интересующимся культурой Востока.

Евгений Иванович Кононенко

Скульптура и архитектура / Прочее / Культура и искусство
Петербург: вы это знали? Личности, события, архитектура
Петербург: вы это знали? Личности, события, архитектура

Знали ли вы, что в Петербурге жил брат французского революционера Марата? Чем примечательна дама, изображенная на одном из лучших портретов кисти Репина? Какова судьба продававшихся в городе мумий? Это лишь капля в море малоизвестных реалий, в которое будет невероятно интересно окунуться и обитателям Северной столицы и жителям других городов.Эта книга – сборник популярно написанных очерков о неизвестных или прочно забытых людях, зданиях, событиях и фактах из истории Петербурга.В книге четыре раздела, каждый из которых посвящен соответственно историческим зданиям, освещая их создание, владельцев, секреты, происходившие в них события и облик; памятным личностям, их жизни в городе, их роли в истории, занимательным фактам их биографии; отдельный раздел в честь прошедшего Года Италии отведен творчеству итальянских зодчих и мастеров в Петербурге и пригородах и четвертая часть посвящена различным необычным происшествиям.Издание отлично иллюстрировано портретами, пейзажами, рисунками и фотографиями, а все представленные вниманию читателей сведения основаны на многолетних архивных изысканиях.

Виктор Васильевич Антонов

Скульптура и архитектура / История / Образование и наука