Подобная предвзятость уже наблюдается в таких популярных инструментах, как переводчик Google. Например, используем его для перевода с турецкого на английский двух фраз: o bir doktor
и o bir hemşire. Результат будет такой: he is a doctor («он — врач») и she is a nurse («она — медсестра») {369}. Но o в турецком языке — это местоимение третьего лица, не указывающее на пол. Представление о том, что врач мужчина, а медсестра — женщина, отражает культурные предрассудки и асимметричное распределение пола в сфере медицины: мы получили сексистский алгоритм. Использование такого алгоритма для просмотра заявлений о приеме на работу усилит существующие культурные предубеждения. Хотя дискуссии вокруг искусственного интеллекта нередко фокусируются на алгоритмах, часто именно данные определяют его работу и могут привести к нежелательным и опасным результатам. В 2015 году компания Flickr выпустила систему распознавания образов, в которой черные люди были неверно обозначены как «обезьяны», а фотографии концентрационных лагерей в Дахау и Аушвице как «конструкция для лазания» и «спорт». Если не соблюдать осторожность, подобные ошибки могут возникать, когда компьютеры будут идентифицировать характеристики людей по их речи. И это будет связано с тем, что в нашем голосе содержится тонкая, но часто противоречивая информация о расе, сексуальности и гендере.Такие компании, как Google, Apple и Microsoft, сегодня владеют огромными массивами звукозаписей, которые они используют для создания систем распознавания речи. В одном из экспериментов Microsoft использовала данные продолжительностью 24 часа из своего голосового приложения, содержащего 30 000 высказываний. Люди искали конкретные фирмы, поэтому часто встречались слова Walmart, McDonald’s
или 7-Eleven. Закончив самообучение, искусственная нейронная сеть достигла точности 70 % в распознавании предложений при голосовых запросах, которые она раньше никогда не слышала {370}. Такой результат впечатляет, если учесть, что у авторов записей были разные акценты, в сообщениях содержались ошибки в произношении и фоновый шум. Однако это все равно означает, что многие слова, предложенные алгоритмом, были выбраны неправильно. Но это проблема не только компьютеров. Как мы уже видели, когда люди слушают речь, в ней часто могут отсутствовать куски или присутствовать ошибки, но мозг заполняет пропуски или вносит исправления. То же самое можно сказать и о чтении. Не так уж трудно понять следующее предложение: «По реузльтатам иселдовасния… не имеет занчения, в каокм поярдке сотят бувкы в солвах, евидстенная ванжая вещщ — тошбы певрая и оплсендяя букав была в нжуонм метсе» {371}. Испорченный текст можно исправить при условии, что достаточное количество букв — правильные. Это же относится и к речи.Когда вы набираете поисковый запрос в браузере, появляются варианты окончания искомого текста. Когда я набираю в поисковике «Тревор Кокс», первое предложение будет «Тревор Кокс WHL»[37]
, потому что мое имя совпадает с именем канадского игрока в хоккей на льду, играющего за Medicine Hat Tigers. Такие предположения возможны, поскольку для создания моделей языка используются обширные данные, и в приведенном примере слова, скорее всего, встречаются рядом при поисковом запросе. Подобное моделирование языка жизненно важно для распознавания речи, так как позволяет исправлять неверно понятые слова {372}.Голосовой поиск удивительно эффективен, но может ли он помочь в распознавании лжи? Только не сегодня, поскольку модель языка фокусируется на вероятных маркерах поиска, и у Google для этого имеются огромные массивы информации. Компания начала анализировать ложные факты на веб-страницах, таким образом, рейтинги результатов исследования могут основываться на надежности сайта {373}
. Но это имеет свои ограничения в плане обнаружения лжи, потому что письменный и устный язык работают по-разному. Давайте рассмотрим богатство игры слов, например, в спунеризме, и проблему создания модели языка, которая могла бы с этим работать. У богослова Уильяма Спунера, который родился в 1844 году, были проблемы: язык не успевал за мозгом. Говорят, что однажды на бракосочетании он сказал: «А теперь поцелуйно обругайте невесту» (It is kisstomary to cuss the bride). А однажды он случайно предложил тост за «нашего чудаковатого старика-декана» (our queer old dean) вместо «за нашу добрую старушку королеву» (our dear old queen) {374}.