Хотя ядерное оружие по-прежнему входит в арсенал средств, которые можно использовать для отклонения астероидов с их пути, по мере расширения наших знаний об этих космических телах инженеры стали разрабатывать и более тонкие подходы. Если нам грозит столкновение, фактически есть всего два варианта: уничтожить угрожающее тело или отклонить его. Если времени много, то отклонение — гораздо более удачный вариант. Например, если у нас есть десять лет, то достаточно изменить скорость астероида на пару сантиметров в секунду, чтобы вместо столкновения получился промах. Такое изменение — крохотная часть скорости большинства астероидов относительно Земли, которая доходит до 25–27
Большие астероиды труднее и отклонять, и разрушать, однако и здесь отклонение предпочтительнее: траектории фрагментов после взрыва невозможно предсказать хоть с какой-то точностью, и после взрыва крупного астероида Землю могут в конечном итоге осыпать его осколки — меньшие по размеру, но все же опасные. Существуют предложения разделить астероид на достаточно мелкие фрагменты, которые не будут представлять опасности для планеты, даже если они до нее долетят, однако эти схемы (пока) не отличаются реальностью. Они включают гигантские «формочки для печенья», которые будут буквально разделять астероид на мелкие кусочки, или «пожирателей», которые будут преобразовывать объект в пыль.
Однако отклонение астероида посредством изменения его траектории кажется более перспективным решением. Изучались разные варианты, включая взрыв на поверхности тела или в космосе рядом с ним, которые придают объекту кратковременный импульс, меняя орбиту, но не разрушают его. В принципе простое столкновение космического аппарата (или нескольких аппаратов) с астероидом даст тот же результат — хотя это сработает только для небольших объектов. Даже крупный космический корабль не окажет никакого воздействия на астероид размером с тот, что образовал кратер Чикшулуб и привел к вымиранию динозавров — это космический эквивалент мухи, врезавшейся в ветровое стекло автомобиля. По этой причине гораздо привлекательнее выглядит использование какой-нибудь слабой, но долговременной силы. К астероиду можно прикрепить какую-нибудь двигательную установку или покрыть поверхность материалом, который будет поглощать или отражать солнечный свет, используя в качестве движущей силы солнечную энергию. Схема привлекает своей простотой, однако ситуация осложняется тем, что все известные околоземные объекты быстро вращаются. Чтобы толкать астероид в конкретном направлении, закрепленную двигательную установку придется периодически включать и выключать по мере вращения объекта. Влияние покрытия поверхности пришлось бы рассчитывать крайне тщательно — нужно знать, когда различные части поверхности будут оказываться на солнце и в тени.
Когда люди впервые обратились к проблеме предотвращения столкновения с астероидом, предполагалось, что эти тела будут напоминать упавшие на Землю метеориты: сплошные каменные или металлические объекты. Эта идея подкреплялась кажущимся сходством между обычными типами метеоритов и астероидов. Однако недавние наблюдения показывают, что даже при сходном минеральном составе разница может быть существенной: многие астероиды представляют собой не отдельные твердые глыбы, а слабо связанные «груды камней». Многие из них оказались парными объектами. И то, и другое усложняет задачу по отклонению потенциально опасной космической угрозы. Становится ясно, что требуется детально знать физические свойства объекта.
Осознание этого факта привело к повышению важности изучения астероидов во всем мире. В результате мы уже добились потрясающих достижений — двух успешных посадок на околоземные объекты. Первая попытка относится к 1996 году, когда НАСА запустило миссию к астероиду Эрос, который был открыт европейскими астрономами еще в 1898 году и с тех пор активно изучался наземными наблюдателями. Насколько сложны такие проекты, иллюстрирует допустимый размер окна запуска: орбита астероида такова, что существовало всего 12 подходящих дней, и в каждом для успешного запуска годилась всего примерно