Для геометрической фазы, открытой Панчаратнамом, мы способны определить запаздывание, возникающее в световой волне, при помощи
Задачу с кошкой также можно связать с площадью поверхности подходящей геометрической формы. Для кошки с конкретным отношением длины к обхвату в поясе мы можем описать ее ориентацию — геометрическую фазу — при помощи сферы{15}
. Воспользовавшись моделью «сложись и крутись» Радемакера и тер Браака, мы можем сказать, что широта на сфере отражает степень сложения кошки в поясе, а долгота — степень ее скрученности, тоже в поясе; на иллюстрации можно увидеть, как мы находим соответствующую точку. Из этого следует, что любые действия кошки, любые ее повороты и закручивания можно изобразить в виде траектории на сфере и показать, что суммарный поворот кошки как целого при возвращении в нормальное положение равен площади поверхности, которую эта траектория описывает на этой «кошачьей сфере».Таким образом, подлинная красота геометрической фазы состоит в том, что она позволяет решать очень сложные задачи через использование очень простой геометрии. Посмотрим еще раз на сложную модель переворачивания кошки Кейна и Шера, разработанную в конце 1960-х гг. для NASA. Серьезным ограничением более ранней модели Радемакера и тер Браака было предположение о том, что кошка сохраняет один и тот же изгиб позвоночника все время переворота, хотя совершенно очевидно, что кошка не может изгибаться назад так же хорошо, как вперед. В модели Кейна и Шера кошка уменьшает изгиб спины по мере закручивания и, по существу, в самой его середине резко меняет знак бокового изгиба.
Если мы сравним оба варианта переворота на «кошачьей сфере», то увидим и ограничения модели Радемакера и тер Браака, и разумность модели Кейна и Шера. Взглянув на «кошачью сферу» сверху, мы увидим, что в простой модели Радемакера и тер Браака кошке придется очень сильно выгнуться назад. Напротив, модель Кейна и Шера позволяет избегать чрезмерного прогиба назад. Там кошка, прежде чем завершить движение, быстро переключается с изгиба вправо на изгиб влево.
Понятно, что оптимальным выбором является модель Кейна и Шера: она позволяет окружить траекторией максимальную площадь (и, соответственно, получить максимальный переворот) и при этом не требует, чтобы позвоночник кошки сгибался под невозможными углами. С эволюционной точки зрения движение кошки отточено так, чтобы в максимальной степени использовать все доступные ей сгибания и закручивания.
Описание переворачивания кошки с использованием сферической поверхности вновь приводит нас по иронии судьбы к первоначальной работе Антуана Парана, проделанной более 300 лет назад. Круг замкнулся. Паран, исходя из соображений математического удобства, предложил рассматривать кошку как шар. И сегодня, рассматривая переворачивание кошки в контексте геометрической фазы, мы видим, что кошку и правда можно представить моделью в виде шара, хотя и совершенно иначе, чем представлял себе Паран.
Возможно, геометрическая фаза — последняя глубокая тайна, которую хранит падающая кошка. Хотя в 1980-е гг. геометрическая фаза была признана ученым сообществом как явление общего порядка, в 1894 г., когда Марей продемонстрировал свои фотографии падающей кошки в Парижской академии наук, она поставила ученых в тупик. Потребовалось около 100 лет, чтобы задача о падающей кошке была признана явлением, связанным с геометрической фазой: кошки отлично умеют прятать свои секреты.
Но действительно ли связь с геометрической фазой — последний секрет, который скрывали кошки? Исследователи продолжают находить все больше связей между падающими кошками и тонкими физическими проблемами. В 1993 г. Ричард Монтгомери написал статью о «калибровочной теории падающей кошки», в которой использовал для описания переворачивания кошки весьма и весьма хитроумную математику. За этой работой последовала статья Тосихиро Иваи 1999 г., в которой автор рассмотрел проблему поворотов с нулевым моментом импульса в контексте квантовой физики; он уделил падающей кошке должное внимание{16}
.