Одной из областей, на которые эта теория уже неосознанно распространилась, была оптика. Когда Берри в 1986 г. посетил Индию, коллеги обратили его внимание на работу по поляризации света, которую провел в 1950-е гг. Шиварамакришнан Панчаратнам{9}
. Когда Джеймс Клерк Максвелл в 1860-е гг. продемонстрировал, что свет — это электромагнитная волна, он одновременно показал, что свет состоит из электрической волны и магнитной волны, колеблющихся синхронно и перпендикулярно направлению, в котором распространяется волна; характер колебаний электрической волны называется«Состояние» поляризации — это форма эллипса, образованного электрической волной; угол наклона эллипса можно изменить при помощи различных оптических устройств (таких как поляризующие солнечные очки). Панчаратнам исследовал поведение света в процессе того, как поляризация изменяется непрерывно, переходя из начального состояния через множество различных состояний обратно в начальное. Он обнаружил, что колебания электрического поля после такого перехода оказывались слегка несинхронными по отношению к колебаниям исходного поляризованного состояния; этот эффект можно было объяснить только конкретным характером изменения поляризации исходного света. Таким образом, Панчаратнам нашел один из первых образцов геометрической фазы. Вскоре после того, как эта связь была установлена, Берри написал статью с объяснениями, в которой воздал должное и Панчаратнаму{11}
.На установление связи между падающими кошками и геометрической фазой потребовалось немного больше времени. В 1990 г. Джеррольд Марсден, Ричард Монтгомери и Тудор Ратиу написали объемную монографию на тему следствий и приложений геометрической фазы в механических системах со множеством движущихся частей. Кошка также удостоилась короткого упоминания в этом контексте: «В этих условиях можно сформулировать интересные вопросы оптимального управления, такие как: „Когда кошка падает и переворачивается в полете (обладая все это время нулевым моментом импульса!), оптимально ли она это делает в терминах, скажем, затрачиваемой энергии?“»{12}
. В качестве примера поворотов с нулевым моментом импульса авторы приводят «человеческий» вариант того, в чем мы узнаем модель падающей кошки Пеано, в которой главную роль играет хвост-пропеллер; авторы назвали такое поведение «шапкой Элроя». Представим себе человека в нормальном вертикальном положении, на голову которого надета шапка с пропеллером на макушке. Если этот человек находится в свободном падении и пропеллер на шапке вращается, то человек должен вращаться в противоположном направлении, по закону сохранения момента импульса. Однако, поскольку человек намного тяжелее пропеллера, его тело с каждым оборотом пропеллера будет лишь немного поворачиваться. Соответственно, после возвращения пропеллера в начальное положение система человек — шапка в целом будет иметь немного иную ориентацию.Самое тщательное исследование падающей кошки в терминах геометрических фаз провел в 2003 г. физик и философ Роберт Баттерман{13}
. В своей статье он связывает воедино падающих кошек, маятник Фуко, поляризованный свет и даже параллельную парковку, называя все это проявлениями геометрической фазы в физике; последний пример стоит кратко пояснить. При параллельной парковке автомобиль, в сущности, сдвигается вбок при помощи поворотов и поступательного движения вперед и назад. «Фаза» в данном случае — это положение машины в боковом направлении, которое изменилось, несмотря на то что ориентация машины в начале и в конце маневра одинакова.Важный урок открытия геометрических фаз состоит в том, что многие сложные физические задачи имеют под собой красивую геометрическую основу. В случае маятника Фуко геометрия реальна — это шарообразная форма Земли, но и в случае падающих кошек, квантовых частиц и поляризации света можно найти аналогичную геометрию, спрятанную в математике задачи. Стоит вскрыть и показать эту геометрию, и задача становится намного более простой для понимания, в некоторых случаях даже почти тривиальной.
В случае маятника Фуко давайте представим, что для оценки поведения маятника мы построили модель Земли единичного радиуса. По этой модели мы прослеживаем путь маятника по поверхности сферы. Мы можем показать математически, что угол, под которым маятник качается через 24 часа (измеренный не в градусах, а в радианах), равен площади поверхности шара, заключенной между экватором и соответствующей широтной линией{14}
.