Теперь представьте, что вы несете маятник по большой сферической поверхности (это нетрудно, ведь мы живем именно на такой поверхности). Если вы совершите небольшую круговую прогулку в любом месте Земли, то вам покажется, что маятник у вас в руках вновь развернулся на 360°, как при прогулке по плоской поверхности, ведь небольшой по площади участок сферы можно считать приближенно плоским. Это аналогично ситуации, когда вы ставите маятник на Северном полюсе, где из-за вращения Земли маятник тоже меняет направление вращения на 360°. Вы также можете идти прямо по поверхности Земли, хотя на сфере прямой путь — это всегда часть большого круга, такого как экватор или любой другой круг, который делит земной шар ровно пополам. Маятник не будет менять направление колебаний, если вы двинетесь по большому кругу, но этот круг отличается от прямого пути на плоскости, потому что форма сферы приведет вас обратно в начальную точку даже в том случае, если вы по пути не будете никуда сворачивать.
Наконец, представим, что вы идете с маятником вдоль одной из северных широтных линий — параллелей — Земли. Ни одна из параллелей, за исключением экватора, не является большим кругом; то есть движение по ним нельзя считать прямолинейным движением на сфере. Поэтому, если вы идете с маятником вдоль широтной линии, проходящей, скажем, через парижский Пантеон, то вам, чтобы оставаться на этой линии, все время приходится чуть-чуть поворачивать влево. Вследствие этого по мере вашего движения направление качания маятника будет разворачиваться вправо. Однако, поскольку форма шара естественным образом направляет вас обратно к начальной точке, вам нет необходимости, чтобы попасть туда, поворачивать так сильно, как пришлось бы на плоской поверхности. На плоскости, чтобы вернуться в начальную точку, вам необходимо активно повернуть на 360°; на сфере, чтобы попасть в начальную точку, вы частично поворачиваете сами, а частично следуете за кривизной Земли.
Следовательно, маятник Фуко иллюстрирует собой некоторую геометрическую фазу. То есть базовая геометрия Земли позволяет маятнику вернуться в то же место, но не в том же состоянии, в каком он был до старта. С падающей кошкой происходит нечто очень похожее. В начальный момент ее тело перевернуто вверх лапами и выпрямлено, а затем она проделывает некоторое количество внутренних движений — поворотов и кручений. После того как кошка проделывает эти движения, ее тело обретает первоначальную незакрученную форму (возвращается в то же «место»), но теперь уже лапами книзу (в другом «состоянии»). Кручения и повороты кошки аналогичны движению маятника вокруг Земли, а изменение ориентации кошки аналогично изменению направления оси колебаний маятника. Математически система, демонстрирующая такие изменения, не является голономной, или демонстрирует
Существуют различные типы неголономности. В качестве еще одного примера вернемся к нашему полярному путешественнику. Зададимся вопросом: как меняется высота положения путешественника по мере его движения по маршруту? Он может, в принципе, подняться по пути на какой-нибудь холм, то есть высота его положения увеличится, но где-то дальше он обязательно спустится с холма, так что по возвращении в лагерь высота положения окажется прежней.
Предположим теперь, что он путешествует внутри многоуровневого гаража, в котором уровни соединены спиральными пандусами. Если маршрут ведет путешественника вверх по одному из спиральных пандусов, то он все время будет идти только вверх и закончит маршрут точно на этаж выше точки старта. Это еще один пример неголономности: хотя в координатах север — юг — восток — запад этот человек прошел замкнутый маршрут, в результате он оказался в другом месте — на другой высоте. Аналогично маятник в конечном итоге качается в другом направлении, а кошка приземляется в другой ориентации.
Во времена Фуко неголономность маятника, кажется, не произвела особого впечатления на исследователей; они были в восторге от возможности своими глазами наблюдать вращение Земли и стремились вывести точные математические уравнения, которые описывали бы ее движение. Только 100 с лишним лет спустя неголономность в физике получила подлинное признание и оценку, причем в совершенно ином контексте — в квантовой физике.