До недавнего времени о существовании планет вокруг других звезд астрономы могли лишь строить гипотезы. Конечно, все понимали, что наша Вселенная была бы очень странным местом, если бы планеты вращались только вокруг Солнца, однако разглядеть планеты у других звезд казалось невозможным. Сейчас мы знаем, что большинство звезд в нашей галактике имеют планетные системы. Чаще всего говорят о существовании от одной до десяти планет около каждой звезды. Более точные оценки привести сложно – нужно больше данных наблюдений. Если волевым решением выбрать из этого диапазона цифру 3, мы получим триллион планет только в нашей галактике. А значит, просто чтобы их пересчитать (тратя на каждую планету по одной секунде), вам понадобится 30 000 лет!
Все знания о звездах, планетах, галактиках и Вселенной астрономы получили в ходе наблюдений за небом[23]
. Таким образом, основным рабочим инструментом астронома является телескоп – он собирает излучение, приходящее к нам из космоса, и делает его доступным для анализа.Первые телескопы работали в оптическом диапазоне. В середине XIX века Джеймс Клерк Максвелл показал, что видимый свет является лишь одним из видов электромагнитного излучения, очень узкой полоской в широком спектре электромагнитных волн, на одном конце которого расположилось ультрафиолетовое, рентгеновское и гамма-излучение, а на другом – инфракрасное и радиоизлучение. Сегодня астрономы с помощью телескопов разных видов изучают небо во всех диапазонах волн. Например, чтобы изучать звезды, лучше всего подходит видимый спектр, а газопылевые и молекулярные облака хорошо видны в миллиметровом и субмиллиметровом диапазонах волн.
В Чилийской высокогорной пустыне на плато Чахнантор, там, где воздух сух и неподвижен бо́льшую часть года, вдали от крупных городов, на высоте 5 км над уровнем моря расположен один из самых знаменитых, самых дорогих и мощных радиотелескопов в мире –
Дело в том, что телескопы – это штуки, в случае с которыми размер действительно имеет значение. Разрешающая способность в них зависит от диаметра главного зеркала (или приемной тарелки): чем она больше, тем более близкие объекты он сможет «разрешить» – разделить, идентифицировать как два объекта, а не принять за один источник. Для того чтобы получить более четкие изображения, мы должны делать более крупные телескопы. Но кто решится сделать телескоп с диаметром тарелки пусть даже в 10 км?
После Второй мировой войны для увеличения разрешающей способности приборов, регистрирующих электромагнитное излучение, английский радиоастроном Мартин Райл разработал новую технологию, прилучившую название «радиоинтерферометрия». Она позволила объединять несколько радиотелескопов таким образом, чтобы те работали как один огромный телескоп – радиоинтерферометр. В радиоинтерферометре разрешающая способность зависит не от размера зеркала, а от расстояния между радиотелескопами, входящими в единый комплекс (это расстояние называют базой).
Идея здесь довольно простая, но иллюстрировать ее лучше на примере двух радиотелескопов. Представьте себе звезду, которую мы наблюдаем, и две отдельно стоящие тарелки радиотелескопов, объединенных в радиоинтерферометр. Поскольку телескопы находятся на некотором расстоянии друг от друга, сигнал от звезды приходит на каждый из них в разное время. В процессе суточного перемещения звезды по небосводу время прихода сигналов на радиотелескопы меняется. Все сигналы передаются на коррелятор (центральный компьютер) и там специальным образом обрабатываются. Такая схема позволяет точно определить координаты небесного объекта, и чем больше радиотелескопов объединено в радиоинтерферометр, тем выше его разрешающая способность.