Читаем Загадки космоса. Планеты и экзопланеты полностью

Радиоинтерферометрия позволила создавать радиотелескопы с базой, эквивалентной радиотелескопу с многокилометровой тарелкой. На 2020 год ALMA является самым крупным по числу объединенных в нем радиотелескопов радиоинтерферометром: в его составе 66 12-метровых тарелок, каждая из которых способна к тому же произвольно перемещаться по площадке размером в 16 км. Все это позволяет получить поистине поразительное разрешение. Благодаря ALMA астрономы сделали много важных открытий. В свете нашего разговора об экзопланетах упомяну одно из них: в 2014 году были опубликованы великолепные фотографии протопланетного диска звезды HL Тельца27. Это первые фотографии, на которых можно детально рассмотреть структуру газопылевого диска.

В 2021 году планируется начать строительство крупнейшего из когда-либо созданных радиоинтерферометров. По структуре он будет напоминать ALMA. Его антенны разместят на двух материках: в Африке, на территории ЮАР, и в Австралии. В ЮАР расположат 200 радиотарелок, способных принимать сигналы в среднечастотном диапазоне, а в западноавстралийской пустыне – почти 130 000 низкочастотных антенн. Проект носит название Square Kilometre Array («Антенная решетка площадью в квадратный километр»), или SKA[24]. Первоначально общая эффективная площадь радиотелескопа, как ожидается, составит 1 км2 (а может, и больше – до 3 км2). Количество данных, генерируемых этим радиотелескопом в секунду, в 10 раз превысит глобальный интернет-трафик. Если все пройдет как задумано, в середине 2020-х годов начнутся первые наблюдения.

При максимальном расстоянии в 65 км между антеннами в Австралии и 150 км в ЮАР, вдали от городов и радиопомех SKA сможет улавливать радиосигналы, которые испускают космические объекты, в том числе протопланетные облака, удаленные от нас на десятки тысяч световых лет, с беспрецедентной чувствительностью.

Для поиска уже сформировавшихся планет радиоинтерферометры подходят плохо[25]. Экзопланеты обычно ищут в инфракрасном и оптическом диапазонах – различные методы поиска эффективны в разных диапазонах волн. Больше всего экзопланет обнаружено в оптическом диапазоне. Но для наблюдений «в оптике» подходит не любая точка на Земле. На самом деле существуют строжайшие требования, которым должна удовлетворять местность, чтобы строительство современного телескопа там было целесообразным. Как и радиоинтерферометрам, оптическим телескопам необходимо отсутствие крупных городов рядом, ясное небо, спокойный воздух и сухой климат. На нашей планете не так много мест, которые могут обеспечить эти условия на протяжении большей части года. Но если подходящее место найдено, будьте уверены: здесь вы найдете не один и не два, а целое множество телескопов разных стран. Такими цитаделями астрономии являются, например, пустыня Атакама в Чили, вулкан Роке-де-лос-Мучачос на Канарском острове Пальма, гора Мауна-Кеа на Гавайях. Последнее место теперь все чаще упоминают в СМИ из-за проблем религиозного характера: вулкан, на котором собираются строить телескоп, является священным местом для коренного народа Гавайев28. Сейчас там расположена обсерватория Кека.

Существует много способов войти в историю, и большое количество денег этому только способствует. Однако распространенное мнение гласит, что состоятельные люди не очень-то хотят, чтобы их знали. Если же вы по счастливой случайности не принадлежите к такой породе людей, профинансируйте строительство телескопа и можете быть уверены: его назовут в вашу честь. В 1954 году Уильям Майрон Кек создал фонд для поддержки научных открытий и новых технологий. А в 1980-х годах в стенах Калифорнийского университета родилась идея создать самый мощный и крупный (на тот момент, конечно же) телескоп в мире. Поиски финансирования привели астрономов Калифорнийского университета в фонд Кека, основатель которого и стал учредителем всего проекта, вложив 70 миллионов долларов. Благодарные ученые назвали телескоп его именем.

Обсерватория Кека состоит из двух 10-метровых оптических телескопов: «Кек I» и «Кек II». «Кек I» увидел «первый свет»[26] в мае 1993 года, а «Кек II» – в октябре 1996-го. Так как технологии создания подходящих по качеству зеркал диаметром более 8,5 м не существует, главные зеркала этих телескопов состоят из 36 шестиугольных сегментов, действующих как единое целое.

Когда мы смотрим на звезды, мы видим свет, который прошел десятки и сотни триллионов километров в безвоздушном пространстве. Из-за таких больших расстояний звезды даже в мощные телескопы должны казаться нам точечными источниками без любого намека на наличие у них площади. Но последнюю сотню километров луч света проходит сквозь атмосферу Земли и преломляется в ее слоях подобно тому, как он преломлялся бы в призме. Эти слои образуются вследствие возникновения участков локальной турбулентности, хаотично меняющих температуру и плотность воздуха в атмосфере Земли. Из-за этого меняется и показатель преломления, и вместо точечного источника мы видим мерцающее пятно.

Перейти на страницу:

Все книги серии Библиотека Гутенберга

Безумие ли?
Безумие ли?

Основная цель книги – борьба со страхом и предубеждением к больным с психическими расстройствами. С одной стороны болезни психики, «безумие» рождают необычный и противоречивый интерес, с другой – «сумасшествие» является настолько пугающим, что в общественном сознании рождается желание закрыться, удалить психически больных из жизни общества. С третьей стороны, некоторое невежество, рожденное страхом, приводит к определенным спекуляциям в этой области. Зачастую родственники больных обращаются к неврологам, психологам, а то и вовсе к экстрасенсам и шаманам, а к психиатру боятся идти. Но вовремя не оказанная помощь может привести к более худшим последствиям, чем необходимость числиться на учете. Данная книга поможет взглянуть на все эти проблемы и будет способствовать уменьшению стигматизации и предубеждений перед психическими расстройствами и психиатрией.

Александр Станиславович Граница

Медицина

Похожие книги

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука