Читаем Загадки космоса. Планеты и экзопланеты полностью

Первым, кто заявил, что обнаружил звездные колебания, стал Питер ван де Камп (1901–1995). В конце 1930-х годов он наблюдал звезду Барнарда (ближайшая к нам одиночная звезда примерно в 6 св. годах от Солнца). Анализируя тысячи фотографий, сделанных в течение 40 лет, он утверждал, что обнаружил явные колебания звезды, вызванные планетой. Согласно вычислениям ван де Кампа планета должна была иметь массу, сопоставимую с массой Юпитера. К сожалению, другие астрономы не смогли подтвердить эти результаты, и долгое время считалось (и считается до сих пор), что ван де Камп просто ошибся: чтобы увидеть звездные колебания, нужны приборы, которые в то время еще не изобрели, так что у ван де Кампа их быть не могло (немногие обсерватории могут похвастаться их наличием и сегодня). Сам же ван де Камп до конца жизни стоял на том, что его измерения верны и планета у звезды Барнарда (и, возможно, не одна) действительно есть. Исследования, проведенные в 2002 году, показали, что если у звезды Барнарда и есть планеты, то их масса должна быть меньше предполагаемой ван де Кампом. Совсем недавно, в ноябре 2018 года, многолетний спор был наконец разрешен: у звезды Барнарда обнаружили каменистую экзопланету массой не менее 3 M30.

Обнаружить изменение координат звезды, создаваемое планетой, невероятно сложно даже сегодня, ведь радиус колебаний звезды в этом случае сопоставим с самим звездным радиусом! Но есть еще один способ обнаружить движение далеких звезд, и связан он не с детектированием периодического изменения координат звезды, а с обнаружением периодического изменения скорости. Этот способ основан на эффекте Доплера.

О том, что изменение скорости звезды может свидетельствовать о наличии у нее планеты, писал еще Отто Струве[28] в 1952 году. К тому же в своей работе он произвел оценку амплитуды колебаний скорости звезды, получаемой от планеты: «Кажется, в настоящее время нет способа обнаружить объекты, соответствующие по массе Юпитеру; также нет большой надежды, что мы сможем обнаружить объекты и в 10 раз бо́льшие по массе, чем Юпитер, если они находятся на расстоянии одной или нескольких астрономических единиц от их родительских звезд. Но, похоже, нет веской причины, по которой гипотетические звездные планеты в ряде случаев не должны быть намного ближе к своим родительским звездам, чем в нашей Солнечной системе. Было бы интересно проверить, есть ли такие объекты… Не исключено, что планета может существовать на расстоянии 1/50 астрономической единицы, или около трех миллионов километров, от звезды… Если бы масса этой планеты равнялась массе Юпитера, наблюдаемая скорость родительской звезды колебалась бы в диапазоне ± 0,2 км/с»31.

Эффект Доплера обычно иллюстрируют с помощью примера с поездом, звук гудка которого при приближении состава становится выше, а при удалении – ниже. Высота звука зависит от воспринимаемой частоты. Звук, как известно, это волна плотности, распространяющаяся в некой среде. Когда поезд приближается, гребни звуковых волн доходят до нас чаще и, следовательно, воспринимаемая частота кажется выше. А когда поезд удаляется, гребни доходят реже и частота звука воспринимается как более низкая. Эффект Доплера характерен для любого типа волн – звуковых и световых, волн на воде.

Воспринимаемая частота света, излученного звездой, зависит от того, с какой скоростью звезда движется относительно Земли. Если она удаляется, то воспринимаемый свет, разложенный в спектр, смещается в сторону низких частот – в сторону красного цвета, – а если звезда приближается к наблюдателю, то в ее спектре преобладают оттенки синего. В Галактике есть звезды, существование планетных систем возле которых удобно обнаруживать, наблюдая, как со временем меняются их спектры, – такой способ называют методом доплеровской спектроскопии. Плоскости эклиптик планетных систем этих звезд расположены к нам как бы ребром. Вращаясь вокруг центра масс, звезда в такой системе одну половину своего годичного периода удаляется от нас, а другую – приближается. Если спектр звезды со временем меняется каким-то периодическим образом, значит, звезда движется, а потому вполне вероятно, вокруг нее есть планета или планеты. Графики, показывающие, как спектр зависит от времени, называются спектрограммами.

Перейти на страницу:

Все книги серии Библиотека Гутенберга

Безумие ли?
Безумие ли?

Основная цель книги – борьба со страхом и предубеждением к больным с психическими расстройствами. С одной стороны болезни психики, «безумие» рождают необычный и противоречивый интерес, с другой – «сумасшествие» является настолько пугающим, что в общественном сознании рождается желание закрыться, удалить психически больных из жизни общества. С третьей стороны, некоторое невежество, рожденное страхом, приводит к определенным спекуляциям в этой области. Зачастую родственники больных обращаются к неврологам, психологам, а то и вовсе к экстрасенсам и шаманам, а к психиатру боятся идти. Но вовремя не оказанная помощь может привести к более худшим последствиям, чем необходимость числиться на учете. Данная книга поможет взглянуть на все эти проблемы и будет способствовать уменьшению стигматизации и предубеждений перед психическими расстройствами и психиатрией.

Александр Станиславович Граница

Медицина

Похожие книги

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука