Для солнечных электростанций, размещенных на стационарной орбите, Солнце будет сиять все 24 часа в сутки на протяжении почти всего года. Исключения составят небольшие периоды времени вблизи моментов весеннего и осеннего равноденствий, когда солнечная электростанция окажется в тени Земли примерно на 72 минуты в сутки. В среднем за год такие затенения приведут к снижению солнечной энергии, получаемой станцией, всего на один процент. К тому же эти затенения придутся на время, когда в районе наземного приемного пункта, куда будет передаваться с орбиты преобразованная энергия Солнца, будет полночь, а следовательно, и потребность в энергии минимальна.
Если на стационарной орбите будет находиться несколько электростанций, они будут тоже затенять друг друга. Но время "затмения" невелико: около 15 минут в 6 и 18 часов по местному времени. Такие перерывы в получении энергии точно предсказуемы, их можно учесть при распределении нагрузки электросети, что позволит обойтись без создания резервных запасов энергии.
Солнечные электростанции можно размещать и на других орбитах, но геостационарная по уже упоминавшейся причине подходит лучше всего. Кроме того, эта орбита довольно емкая: на ней можно разместить большое число станций, не опасаясь, что они столкнутся. Например, если на стационарной орбите равномерно расположить 300 станций, то на каждую пришелся бы средний объем примерно в миллиард кубических километров. Так что вероятность их столкновения ничтожна. В космических проектах гелиостанций, так же как и в наземных, конкурируют в основном два типа преобразователей солнечной энергии в электрическую — фотоэлектрические и теплоэлектрические.
При теплоэлектрическом преобразовании поток солнечной энергии фокусируется зеркалами на полом поглотителе и нагревает циркулирующий внутри его газ, например гелий, который вращает турбину и связанный с ним электрогенератор. Чтобы направить солнечное излучение внутрь полого поглотителя, понадобятся десятки тысяч отражающих зеркал с независимой регулировкой каждого из них. Такой оптической системой нужно будет непрерывно управлять, поддерживая неизменной необходимую геометрию при наличии пусть крошечных, но все-таки влияющих в невесомости неоднородностей гравитационного поля, перепадов температуры в элементах конструкции и сил, возникающих при управлении пространственной ориентацией.
Вывести, собрать на геосинхронной орбите такую конструкцию и эксплуатировать ее, поддерживая постоянно требуемую геометрическую конфигурацию в течение десятилетий, будет непросто. Кроме того, необходимо обеспечить и высокую надежность турбин: ведь ремонт в космосе дело сложное и дорогое. В целом, хотя турботепловой способ преобразования основывается на хорошо известных принципах термодинамики, чтобы реализовать его, предстоит решить немало серьезных научно-технических проблем.
Нельзя сказать, что окончательный выбор относительно варианта преобразователя солнечной энергии в электрическую уже сделан. Но все-таки некоторое предпочтение отдается фотоэлектрическому методу: ведь солнечные батареи в космосе надежно зарекомендовали себя. Например, солнечное "сердце" "Салюта-6" снабжало станцию энергией на протяжении всего времени ее существования на орбите (4 года 10 месяцев). Три крыла батареи "Салюта-6", автоматически поворачивающиеся за Солнцем, обеспечивали максимальную мощность энергопитания 4,5 киловатта. На теневой стороне Земли работала аккумуляторная батарея, которая на свету подзаряжалась от солнечной электростанции. При пиковых нагрузках, когда работали энергоемкие потребители — например бортовой субмиллиметровый телескоп или компрессоры в системе дозаправки топливом, то солнечные и аккумуляторные батареи "трудились" совместно. Обычно всем потребителям станции достаточно было около 1,5 киловатта энергии. Остаток шел на подзарядку батарей.