В отличие от "Салюта-6" для солнечных электростанций на геосинхронной орбите, где Солнце практически никогда не заходит, аккумуляторные батареи не нужны. Какой представляется ученым космическая солнечная электростанция? По одному из проектов, это две прямоугольные решетки длиной шесть и шириной пять километров каждая. Они соединены между собой несущей конструкцией из непроводящего материала. На решетках. помещаются зеркала концентраторов (расположенных в форме желоба), а между ними — кремниевые солнечные батареи. Зеркала-концентраторы направляют падающие на них солнечные лучи на кремниевые' элементы и тем самым повышают интенсивность солнечного потока. Использование зеркал удешевляет станцию, поскольку они много дешевле солнечных элементов. С течением времени под воздействием радиации солнечные батареи деградируют, их коэффициент полезного действия падает. Согласно оценкам суммарная степень деградации за 30 лет работы составит 20 процентов. Чтобы компенсировать уменьшение мощности, прямоугольные решетки можно наращивать новыми секциями со "свежими" кремниевыми элементами или производить постепенную замену сильно "постаревших" элементов. С такой солнечной "плантации" можно получить 8,6 миллиона киловатт мощности. Для сравнения: мощность Братской ГЭС около 4,1 миллиона киловатт.
Но получить в космосе электроэнергию — это, можно сказать, еще полдела. Вот как передать ее на Землю? Пока не создан пригодный для практического использования материал для провода, который можно было бы протянуть на высоту 36 тысяч километров. Если опускать с орбитальной станции самый прочный стальной трос, то он оборвется уже через 48 километров под действием собственного веса. Ученые считают, что лучше всего для передачи электроэнергии с орбиты использовать радиоволны: как в линиях радиосвязи. Только передавать радиоволны будут не информацию, а энергию. Идея передачи энергии в электромагнитном поле была впервые высказана и развита нашим соотечественником Н. А. Умовым в 1874 году в своей докторской диссертации. Югослав Тесла проверил это экспериментально. В 1899 году в Колорадо он построил радиостанцию мощностью 200 киловатт. На расстоянии 25 километров была обеспечена работа нескольких электролампочек и электромоторов.
Так что в принципе этот вопрос был решен в XIX столетии. Но как это часто случается, сама идея намного обогнала практическую потребность в ее промышленной реализации. Поэтому передача энергии с помощью радиоволн сверхвысоких частот считается сейчас новой областью. Развивается она довольно бурно, словно стремится наверстать потерянное за минувшее без малого столетие. Во многом большой прогресс, достигнутый в этом вопросе за последние годы, объясняется тем, что почти все компоненты для создания такой системы передачи энергии уже имелись в наличии. Их заранее подготовила радиоэлектроника. В настоящее время уже существуют линии электропередачи с помощью радиоволн, КПД которых превышает 50 процентов. Ожидается, что при использовании более совершенных приборов КПД достигнет 70 процентов.
Как же устроена радиолиния для передачи электроэнергии? Солнечные батареи преобразуют энергию солнечного света в постоянный ток, который подводится к генераторам колебаний сверхвысоких частот, то есть служит для них источником электропитания. Генераторы преобразуют постоянный ток в колебания сверхвысоких частот — радиоволны.
Техника генерирования и усиления колебаний сверхвысоких частот хорошо освоена промышленностью и интенсивно развивается и совершенствуется. Например, в США ежегодно производится более миллиона сверхвысокочастотных приборов на общую сумму полмиллиарда долларов. На сегодняшний день известны свыше тысячи типов приборов для генерации радиоволн, мощность каждого из которых превышает несколько киловатт, но пока наиболее подходит амплитрон — прямой "родственник" прибора, с которого, можно сказать, и началось широкое использование радиолокации…