Наконец, все содержание западного числового мышления объединяется в одной классической проблеме, являющейся ключом к трудноусвояемому понятию бесконечности – фаустовской бесконечности, отличной от бесконечности арабского и индийского мирочувствования. Речь идет о теории предела вообще, независимо от частных случаев, когда число рассматривается как бесконечный ряд, как кривая или функция. Этот предел является полной противоположностью античному, который до сих пор не назвали этим именем и который выражается в неподвижно ограниченной плоскости измеримой величины. До самого XVIII века эвклидовски-популярные предрассудки затемняли смысл принципа дифференциала. Как бы осторожно ни применять наиболее доступное понятие бесконечно малого, ему все остаются присущи какой-то момент античной константности, какая-то внешность величины, хотя Эвклид не признавал его и не мог признать таковой. Нуль есть постоянная величина, некоторое число в линейной непрерывности между 1 и -1; аналитическим исследованиям Эйлера во многом повредило то обстоятельство, что он – как и многие вслед за ним – считал бесконечно малые величины за нули. Только вполне разъясненное Коши понятие предела устранило этот остаток античного чувства чисел и сделало исчисление бесконечных вполне свободной от противоречий системой. Только переход от "бесконечно малых чисел" к тому, "что находится ниже предельного значения всякой возможной конечной величины", приводит к концепции изменяющегося числа, находящегося ниже любой отличной от нуля конечной величины и, следовательно, не имеющего в себе ни малейшего признака величины. Предел в этой окончательной формулировке вообще не представляет собой нечто такое, к чему совершается приближение. Он представляет собою само приближение – процесс, операцию. Это не состояние, а поведение. Здесь, в решающей проблеме западной математики неожиданно вскрывается, что наша душа предрасположена исторически *.
* "Функция, правильно понимаемая, есть бытие, мыслимое в деятельности" (Гете).
16
Освободить геометрию от наглядности, алгебру от понятия величины и объединить обе по ту сторону элементарных рамок конструкции и счета в мощном здании теории функции – таков был великий путь западного числового мышления. Таким образом античное постоянное число растворилось в изменяющемся. Геометрия, ставши аналитической, разрушила все конкретные формы. Она заменила математическое тело, из неподвижных форм которого извлекаются геометрические значимости, абстрактными пространственными отношениями, которые в конце концов являются вообще совершенно неприменимыми к фактам чувственно наличной наглядности. Далее, она заменила оптические образования Эвклида геометрическим местом точек и их отношением к системе координат, исходный пункт которых может быть произвольно выбран, и свела предметное существование геометрического объекта к требованию неизменяемости выбранной системы во все время операции, имеющей теперь уже своим предметом не измерения, а уравнения. Однако вскоре устанавливается истолкование координат исключительно как чистых значимостей, не столько определяющих, сколько изображающих и заменяющих положение точек как абстрактных элементов пространства. Число, предел ставшего, изображается символически уже не в образе какой-либо фигуры, а в образе уравнения. Смысл «геометрии» превращается в обратный: система координат как образ исчезает, и точка становится теперь совершенно абстрактной группой чисел. Путь, которым архитектура Ренессанса превращается благодаря конструктивным нововведениям Микеланджело и Виньолы в барокко, является точным отражением внутренних изменений анализа. Чувственно чистые линии фасадов дворцов и церквей утрачивают свою реальность. На месте ясных координат флорентийско-римской расстановки колонн и расчленения этажей появляются «бесконечные» элементы взвивающихся и волнообразных частей здания, волют и картушей. Конструкция исчезает в изобилии декоративного-функционального, говоря языком математики; колонны и пилястры, соединенные в группы и связки, прорезывают фронтоны, не давая отдыха для глаза, то соединяясь, то вновь расступаясь; плоскости стен, потолков, этажей расплываются потоком украшений стукко и орнаментов, пропадают и распадаются под действием красочных световых эффектов. В то же время свет, разлившийся в привольной игре над этим миром форм зрелого барокко – начиная с Бернини в 1650 г. вплоть до рококо в Дрездене, Вене и Париже – становится чисто музыкальным элементом. Дрезденский Цвингер – это симфония. Вместе с математикой также и архитектура превратилась в XVIII веке в мир музыкального характера.
17