Сопротивление воды напоминает сопротивление воздуха — вправо и влево от корабля бегут волны, а позади образуются завихрения — пенистые буруны; сказывается также и трение между водой и погруженной частью корабля. Разница между движением в воздухе и движением в воде состоит только в том, что вода — жидкость несжимаемая и перед кораблем не возникает уплотненной «подушки», которую приходится пробивать. Зато плотность воды почти в тысячу раз больше плотности воздуха. Вязкость воды тоже значительна. Вода не так-то уж охотно и легко расступается перед кораблем, поэтому сопротивление, которое она оказывает предметам, весьма велико. Попробуйте, например, нырнув под воду, похлопать там в ладоши. Это не удастся — вода не позволит.
Скорости морских кораблей значительно уступают скоростям воздушных кораблей. Наиболее быстроходные из морских судов — торпедные катера развивают скорость в пятьдесят узлов, а глиссеры, скользящие по поверхности воды, — до ста двадцати узлов[3].
Первое предположение
Почему вода и воздух оказывают сопротивление движущимся предметам, более или менее понятно — их приходится расталкивать, чтобы проложить дорогу. Но почему так трудно тянуть гужевые сани или катить тележку? Ведь спереди им ничего не мешает, спереди у них ничего, кроме воздуха, нет, воздух для медленно движущихся предметов не помеха, а двигать все-таки трудно — снизу что-то мешает. Это «что-то» называют силами трения.
Разгадка сущности трения пришла не сразу. Ученым пришлось потрудиться, чтобы понять, в чем тут дело, и они едва не встали на ложный путь.
Раньше, когда спрашивали, что такое трение, отвечали так:
— Посмотрите на свои подметки! Давно ли они были новые и крепкие, а сейчас уже заметно сносились, стали потоньше.
Опыты показали, что аккуратный человек может сделать по хорошей дороге примерно миллион шагов, прежде чем его подметки проносятся насквозь. Конечно, если они из прочной, хорошей кожи.
Посмотрите на ступени лестниц в каком-либо старом здании, в магазине или в театре — словом, там, где бывает много народу. В тех местах, куда люди ступают чаще, в камне образовались углубления: шаги сотен тысяч людей стерли камень. Каждый шаг чуть-чуть разрушал его поверхность, и камень стирался, превращаясь в пыль.
Снашиваются и подметки, и поверхность пола, по которому мы ходим. Стираются рельсы железных дорог и трамвайных путей. Постепенно исчезает, превращается в пыль асфальт шоссейных дорог — его стирают колеса автомобилей. Резиновые шины тоже расходуются, как и резинки, которыми стирают написанное карандашом.
Поверхность каждого твердого тела всегда имеет неровности и шероховатости. Зачастую они совершенно незаметны на глаз. Поверхности рельсов или полозьев саней кажутся очень гладкими и блестящими, но если посмотреть на них в микроскоп, то при большом увеличении будут видны бугры и целые горы. Так выглядят мельчайшие неровности на «гладкой» поверхности. Такие же микроскопические «Альпы» и «Карпаты» существуют и на стальном ободе колеса. Когда колесо катится по рельсам, неровности его поверхности и рельса цепляются друг за друга, происходит постепенное разрушение трущихся предметов, а движение замедляется.
Ничто в мире само собой не делается, и, чтобы производить даже ничтожнейшее разрушение поверхности стального рельса, приходится затрачивать некоторое усилие. Трение скольжения и качения оттого-то и тормозит всякое движущееся тело, что ему приходится расходовать часть своей энергии на разрушение своей же поверхности. Чтобы уменьшить износ трущихся поверхностей, их стараются делать как можно ровнее, как можно глаже, так, чтобы на них оставалось поменьше всяких шероховатостей. Одно время думали, что единственной причиной трения является шероховатость поверхности. Казалось, что трение можно совсем уничтожить, если хорошенько отшлифовать и отполировать трущиеся поверхности. Но, как выяснилось на основании весьма искусно сделанных опытов, победить трение не так-то просто.
Неожиданный результат
При воспроизведении опытов Кулона с трением покоя взяли стальную плиту и стальной брусок, по форме похожий на кирпич, но только не такой большой. Он прижимался к поверхности плиты силой своего веса. К бруску был приделан крючок. За крючок зацепили пружинные весы — динамометр и, потянув за кольцо динамометра, стали двигать брусок по плите.
Динамометр показывал силу тяги. Если тянуть за динамометр так, чтобы брусок двигался совершенно равномерно и прямолинейно, сила тяги будет в точности равна силе трения. Динамометр покажет величину силы трения скольжения. Она будет несколько меньше силы трения покоя, определенной Кулоном. Но при малых скоростях скольжения эти силы можно считать равными.
Так и делали: протягивали бруски по плите с определенной небольшой скоростью и замечали показания динамометра.
Александр Амелин , Андрей Александрович Келейников , Илья Валерьевич Мельников , Лев Петрович Голосницкий , Николай Александрович Петров
Биографии и Мемуары / Биология, биофизика, биохимия / Самосовершенствование / Эзотерика, эзотерическая литература / Биология / Образование и наука / ДокументальноеВасилий Кузьмич Фетисов , Евгений Ильич Ильин , Ирина Анатольевна Михайлова , Константин Никандрович Фарутин , Михаил Евграфович Салтыков-Щедрин , Софья Борисовна Радзиевская
Приключения / Публицистика / Детская литература / Детская образовательная литература / Природа и животные / Книги Для Детей