Без модификации или расширения Стандартной модели теория элементарных частиц может достичь малой массы хиггсовской частицы только за счет сверхъестественного значения ее классической массы. Это значение должно быть невероятно велико и, возможно, отрицательно, так чтобы оно могло в точности сократить большие квантовые вклады. Все массовые вклады в сумме должны приводить к значению 250 ГэВ.
Для того чтобы это произошло, как в рассмотренной выше ТВО, масса должна быть тонко настраиваемым параметром. И этот тонко настраиваемый параметр должен быть поразительно точной подгонкой, специально придуманной так, чтобы дать малую полную массу хиггсовской частицы. Либо квантовые вклады от виртуальных частиц, либо классический вклад должны быть отрицательными и практически равными друг другу по величине. Положительные и отрицательные слагаемые, каждое из которых имеет шестнадцать порядков величины, должны в сумме дать много меньшую величину. Требуемая тонкая настройка, которая должна иметь точность в шестнадцать знаков, намного сильнее, чем тонкая настройка, требуемая для того, чтобы ваш карандаш держался на острие. Вероятность такая же, как случайный выигрыш в игре на угадывание цифр с Икаром.
Специалисты по физике частиц предпочли бы модель, не содержащую тонкой настройки, которая требуется в Стандартной модели для обеспечения малой массы хиггсовской частицы. Хотя мы могли бы примириться с тонкой настройкой от безысходности, но мы бы презирали себя. Тонкая настройка почти наверняка есть акт отчаяния, отражающий наше невежество. Да, иногда неправдоподобные вещи случаются, но они редко случаются тогда, когда мы этого хотим.
Проблема иерархии — самая неотложная из тех, с которыми сталкивается Стандартная модель. Чтобы добавить оптимизма, можно сказать, что проблема иерархии дает ключ к разгадке того, что играет роль хиггсовской частицы и нарушает электрослабую симметрию.
Любая теория, заменяющая теорию двух хиггсовских полей, должна естественно обеспечить или предсказать низкий электрослабый масштаб, в противном случае о ней незачем и размышлять. Многие фундаментальные теории совместимы с наблюдаемыми физическими явлениями, но лишь малая их часть обращается к проблеме иерархий и включает легкую хиггсовскую частицу убедительным образом, не прибегая к тонкой настройке. В то время как задача объединения взаимодействий является соблазнительной теоретической идеей, задача решения проблемы иерархий — это конкретная необходимость, подгоняющая прогресс в изучении сравнительно низких энергий. Этот вызов становится еще более интригующим, если учесть, что все, касающееся проблемы иерархий, должно иметь экспериментальные следствия, которые будут измеримы на БАК, на котором экспериментаторы рассчитывают найти частицы массами от 250 до 1000 ГэВ. Без таких дополнительных частиц нам с этой задачей не справиться. Мы вскоре увидим, что экспериментальными следствиями решения проблемы иерархий может быть наличие суперсимметричных партнеров, или частиц, путешествующих в дополнительных измерениях, которые мы обсудим позднее.
• Хотя мы знаем, что механизм Хиггса отвечает за массы частиц, простейший известный пример, в котором применяется хиггсовский механизм, содержит обманчивый трюк. В простейшей теории ожидается, что массы слабых калибровочных бозонов и кварков примерно в десять миллионов миллиардов раз больше того значения, которое мы знаем.
• Проблема иерархии возникает из расхождения между масштабом массы слабых взаимодействий и чудовищным планковский масштабом масс (рис. 63). Последняя масса важна для гравитации — большое значение планковского масштаба масс показывает нам, почему тяготение очень слабо. Таким образом, другой способ сформулировать проблему иерархии — это спросить, почему гравитация столь слаба, намного слабее других негравитационных взаимодействий.
• Любая теория, решающая проблему иерархии, будет экспериментально проверяема, так как она обязательно будет иметь экспериментальные следствия, проверяемые на коллайдерах, работающих при энергиях выше масштаба энергий слабых взаимодействий. Очень скоро такие энергии будут исследоваться на Большом адронном коллайдере.
Глава 13
Суперсимметрия: скачок за пределы Стандартной модели
Gene Kelly, («Singing in the Rain»)[125]