Читаем Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. полностью

Требование, чтобы хиггсовская частица, а следовательно, и суперпартнеры, были бы ненамного тяжелее нескольких сотен ГэВ (так, чтобы не вносить большие квантовые вклады в массу хиггсовской частицы), вместе с тем фактом, что эксперименты уже осуществили поиск суперпартнеров с массами порядка пары сотен ГэВ, говорит о том, что если суперсимметрия существует в природе и решает проблему иерархии, то суперсимметричные партнеры должны иметь массы порядка нескольких сотен ГэВ. Это очень волнующее утверждение, так как оно подразумевает, что экспериментальное свидетельство существования суперсимметрии может быть совсем рядом, за углом, и совсем скоро может быть получено на коллайдерах частиц. Совсем небольшое увеличение энергии по сравнению с существующим коллайдером Тэватроном может оказаться достаточным, чтобы достичь энергий, при которых должны появиться суперпартнеры.

Эту область энергий будет изучать Большой адронный коллайдер. Если суперсимметрия не будет открыта на БАК, который будет искать частицы с массами до нескольких тысяч ГэВ, это будет означать, что суперпартнеры слишком тяжелы, чтобы решить проблему иерархии, и суперсимметричное решение будет исключено.

Но если суперсимметрия решает проблему иерархий, это будет экспериментальный шквал. Ускоритель частиц с энергиями порядка 1 ТэВ (1000 ГэВ) обнаружит вдобавок к хиггсовской частице еще кучу суперсимметричных партнеров частиц Стандартной модели. Мы увидим глюино и скварки, а также слептоны, вино, зино и фотино. Все новые частицы будут иметь те же заряды, что и частицы Стандартной модели, но будут тяжелее. При достаточной энергии соударений эти частицы будет трудно пропустить. Если суперсимметрия верна, мы скоро получим подтверждение этого.


Суперсимметрия: оценка доказательств

Это ставит нас перед главнейшим вопросом: существует ли суперсимметрия в природе? Жюри еще не вынесло вердикт. Без дополнительных фактов любой ответ будет только предположением. В настоящее время как защита, так и обвинение имеют аргументы в свою пользу.

Уже отмечались две важнейшие причины верить в суперсимметрию: проблема иерархии и суперструны. Третий убедительный довод в пользу суперсимметрии — потенциальная возможность объединения всех взаимодействий в супер-симметричных расширениях Стандартной модели. Как обсуждалось в гл. 11, константы электромагнитных, слабых и сильных взаимодействий зависят от энергии. Хотя первоначально Джорджи и Глэшоу обнаружили, что взаимодействия в Стандартной модели объединяются, более точные измерения этих трех взаимодействий показали, что объединение в Стандартной модели происходит не полностью. На верхнем чертеже рис. 66 представлены графики трех констант взаимодействий как функций энергии.

Однако суперсимметрия вводит много новых частиц, обладающих этими же тремя взаимодействиями. Это приводит к изменению зависимости взаимодействий от расстояния (или энергии), так как среди виртуальных частиц теперь присутствуют и суперсимметричные партнеры. Возникающие дополнительные квантовые вклады входят в расчеты методом ренормализационной группы и влияют на то, как зависят от энергии константы электромагнитных, слабых и сильных взаимодействий.

Нижний график на рис. 66 показывает, каким образом константы взаимодействий зависят от энергии, если учесть влияние суперпартнеров. Примечательно, что с учетом суперсимметрии три взаимодействия объединяются точнее, чем до этого. Это более важно сейчас, чем в ранних попытках объединения, так как теперь в нашем распоряжении имеются значительно более точные измерения констант взаимодействий. Пересечение трех линий может быть случайностью. Но оно может рассматриваться и как свидетельство в поддержку суперсимметрии.

Другое приятное свойство суперсимметричных теорий состоит в том, что они содержат естественного кандидата на роль темной материи. Темная материя — это несветящаяся материя, заполняющая Вселенную, которая была обнаружена по своему гравитационному притяжению. Даже несмотря на то что четверть энергии Вселенной запасено в темной материи, мы до сих пор не знаем, из чего эта материя состоит[128]. Подходящим кандидатом на роль темной материи могла бы быть суперсимметричная частица, которая не распадается и имеет подходящую массу и константу взаимодействия. Действительно, легчайшая суперсимметричная частица не распадается и могла бы иметь нужную массу и нужные взаимодействия, чтобы быть той частицей, из которых состоит темная материя. Таким наилегчайшим суперпартнером может быть фотино, партнер фотона. Другой вариант — в сценарии с дополнительными измерениями, который мы рассмотрим ниже, такой частицей может быть вино, партнер калибровочного W-бозона.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже