Читаем Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. полностью

Проблема состоит в том, что хотя в строго суперсимметричной теории такие меняющие аромат взаимодействия не возникают, как только суперсимметрия нарушается, ничто не гарантирует нам, что мюонное и электронное числа сохраняются. Суперсимметричные взаимодействия в теории с нарушенной суперсимметрией могут изменять число электронов и мюонов, в противоречии с тем, что мы знаем из опыта. Происходит это потому, что массивные бозонные суперпартнеры в строгом смысле не тождественны своим партнерам фермионам. Массы, которыми они обладают в суперсимметричной теории, позволяют бозонным суперпартнерам полностью перемешиваться. Например, с мюоном может быть спарен не только смюон, но и сэлектрон. Но спаривание сэлектрона с мюоном приведет ко всем типам распадов, которые, как мы знаем, не происходят. В любой правильной теории природы взаимодействия, изменяющие мюонное или электронное числа, должны быть очень слабыми (или несуществующими), так как такие взаимодействия никогда не наблюдались.

У кварков возникнут похожие проблемы. Если суперсимметрия нарушена, то кварковый аромат не только не будет сохраняться, но будет приводить к опасному перемешиванию поколений, чего так боялся Икар в начале главы. Определенное смешивание кварков в природе происходит, но оно существенно меньше, чем предсказывается теориями с нарушением суперсимметрии.

Теории с нарушением суперсимметрии сталкиваются с очень трудной проблемой объяснения того, почему подобные меняющие аромат взаимодействия не встречаются намного чаще. К сожалению для суперсимметричных теорий, большинство их не может объяснить отсутствие явлений с изменением аромата, подобных упомянутым выше. Это недопустимо; такое смешивание должно быть запрещено, если теории соответствую природе.

Если эта проблема кажется вам неясной, возможно, вам принесет облегчение тот факт, что многие физики первоначально чувствовали то же самое и не считали проблему ароматов в суперсимметричных теориях столь важной. Если до предела упростить проблему, раскол в мыслях проходил вдоль географических границ: европейцы тревожились по поводу этой проблемы меньше американцев. Те из нас, кто уже потратил годы на обдумывание проблемы аромата с иных точек зрения, знали, как трудно было бы ее решить. Но многие изначально игнорировали следствия анархического принципа и не видели, почему надо тревожиться. Однажды, после возвращения в 1994 году с Международной конференции по суперсимметрии в Анн-Арборе, штат Мичиган, Дэвид Каплан, прекрасный физик (и мой первый коллега во время аспирантуры), работающий сейчас в Институте ядерной физики в Сиэттле, рассказал мне, как он был расстроен после того, как объяснил аудитории предлагаемое им решение проблемы аромата, но только потом обнаружил, как мало людей думали, что там вообще была проблема!

Однако все довольно быстро изменилось. Большинство ученых сейчас признает серьезность проблемы ароматов. Очень трудно найти теории нарушения суперсимметрии, которые выдают все необходимые массы суперпартнеров, не подвергая опасности ароматы частиц. Как нарушить суперсимметрию, но не допустить изменения аромата, — это ключевая проблема, если суперсимметрия преуспеет в решении проблемы иерархии. Нарушение законов сохранения числа мюонов и электронов (а также кварков) может показаться технической проблемой, но на самом деле это ахиллесова пята нарушения суперсимметрии. Очень трудно предотвратить превращение суперпартнеров друг в друга. В общем случае симметрии бессильны это предотвратить.

И вновь мы возвращаемся к нашей теме: теории с симметрией элегантны, но нарушенная симметрия, описывающая видимый нами мир, должна быть в равной степени элегантна. Как и почему нарушается суперсимметрия? Мы завершим сложную теоретическую задачу понимания суперсимметричных теорий только тогда, когда мы найдем убедительную модель нарушения суперсимметрии.

Это не означает, что суперсимметрия с необходимостью неверна, или что она не имеет ничего общего с проблемой иерархии. Однако требуется дополнительный ингредиент для того, чтобы суперсимметричные теории мира были успешными. Вскоре мы увидим, что таким дополнительным ингредиентом могут быть дополнительные измерения.


Что стоит запомнить

• Суперсимметрия по существу удваивает спектр частиц. Для каждого бозона, имеющегося в теории, суперсимметрия вводит партнера — фермион, для каждого фермиона вводит партнера — бозон.

• Квантово-механические эффекты (без суперсимметрии) приводят к тому, что хиггсовская частица не может остаться достаточно легкой, как это требуется в Стандартной модели. До появления теорий с дополнительными измерениями, суперсимметрия была единственным известным способом борьбы с этой проблемой.

• Суперсимметрия не обязательно объясняет нам, почему хиггсовская частица легкая, но она решает проблему иерархий.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже