Читаем Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. полностью

Другой способ объяснения — сказать, что большие энергии для изучения малых расстояний нужны нам потому, что в физических процессах на малых расстояниях участвуют только частицы, волновые функции которых меняются на малых расстояниях. Так же как Вермеер не смог бы написать свои картины с помощью кисти шириной два дюйма, и так же как вы не можете видеть мелкие детали, если у вас плохое зрение, частицы не могут быть чувствительными к физическим процессам на малых расстояниях, если их волновые функции не меняются на очень малых масштабах. Но, согласно де Бройлю, частицы, волновые функции которых включают малые длины волн, обладают большими импульсами. Де Бройль утверждал, что длина волны частицы-волны обратно пропорциональна ее импульсу. Поэтому соотношение де Бройля вынуждает нас заключить, что для анализа физических явлений на малых расстояниях нужны частицы с большими импульсами, а следовательно, и большими энергиями.

Этот вывод имеет важные следствия для физики частиц. Только частицы больших энергий чувствуют явления, связанные с физическими процессами на малых расстояниях. Рассмотрим на двух конкретных примерах, насколько большие энергии подразумеваются.

Физики-частичники часто измеряют энергию в числах, кратных электрон-вольту (сокращенно эВ). Один электронвольт равен энергии, требуемой для движения электрона в поле с разностью потенциалов 1 В (такую разность потенциалов создает слабенькая батарейка). Я буду далее использовать производные единицы гигаэлектронвольт (ГэВ) и тераэлектронвольт (ТэВ); 1 ГэВ равен 1 миллиарду эВ, 1 ТэВ равен 1 триллиону эВ.

Физики-частичники часто находят удобным использовать эти единицы для измерения не только энергии, но и массы. Это можно сделать, так как соотношения между массой, импульсом и энергией в специальной теории относительности показывают, что эти три величины связаны друг с другом скоростью света — константой, значение которой равно с = 299 792 458 м/с. С помощью скорости света можно перевести данную энергию в массу или импульс. Например, знаменитая формула Эйнштейна Е = тс2 означает, что с каждой конкретной энергией связана определенная масса. Так как каждый знает, что переводной коэффициент равен с2, его можно убрать, и выразить все массы в единицах эВ. В таких единицах масса протона равна примерно 1 миллиарду эВ или 1 ГэВ.

Такой перевод одних единиц в другие аналогичен тому, что вы делаете каждый день, говоря, например, кому-то: «Станция в десяти минутах от нас». Вы предполагаете известным конкретный переводной коэффициент. Расстояние может быть равным одному километру, что соответствует десяти минутам ходьбы пешком, или двадцати километрам, что соответствует десяти минутам езды по скоростной дороге. Между вами и вашим собеседником существует негласная договоренность о согласованном переводном коэффициенте.

Эти соотношения специальной теории относительности в сочетании с соотношением неопределенностей определяют минимальный пространственный размер физических процессов, который может исследовать или детектировать волна или частица определенной энергии или массы. Применим эти соотношения к двум очень важным в физике частиц энергиям, которые часто будут появляться в последующих главах (рис. 46).

Первая энергия, известная как характерная энергия слабых взаимодействий, равна 250 ГэВ. Физические процессы при этой энергии определяют ключевые свойства слабого взаимодействия и элементарных частиц, наиболее интересным из которых является механизм приобретения частицами массы. Физики (включая меня) ожидают, что, когда мы исследуем эту область энергии, обнаружатся новые явления, предсказываемые пока что неизвестными физическими теориями, и мы узнаем много нового о фундаментальной структуре материи. К счастью, эксперименты уже близки к исследованию области характерной энергии слабых взаимодействий и вскоре смогут рассказать нам все, что мы хотим знать.

Иногда я буду говорить о характерной массе слабых взаимодействий, которая связана с энергией слабых взаимодействий через скорость света. В более привычных единицах характерная масса слабых взаимодействий равна 10-24 кг. Но, как я уже объясняла, физики-частичники предпочитают говорить о массе в единицах ГэВ.

Связанный с энергией радиус слабых взаимодействий равен 10-18 м. Он определяет размер сферы действия слабого взаимодействия — максимальное расстояние, на котором частицы могут влиять друг на друга за счет сил слабого взаимодействия.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже