В физике существование преобразования симметрии в системе означает, что существует определенная процедура перегруппировки системы, оставляющая неизменными все ее измеримые физические свойства[112]
. Например, если система обладаетТрудно переоценить важность симметрии в физических законах. Многие физические теории, такие как законы электродинамики Максвелла или теория относительности Эйнштейна, глубоко уходят корнями в симметрию. Используя различные симметрии, мы можем обычно упростить задачу использования теорий для получения физических предсказаний. Например, предсказание орбитального движения планет, гравитационное поле Вселенной (оно более или менее симметрично относительно вращений), поведение частиц в электромагнитных полях и много других физических явлений становятся математически проще, если принять во внимание симметрию.
Симметрии в физическом мире не всегда полностью очевидны. Но даже если симметрии не до конца ясны или являются всего лишь теоретическими инструментами, они обычно сильно упрощают формулировку физических законов. Не является исключением и квантовая теория взаимодействий, к рассмотрению которой мы вскоре перейдем.
В общем случае физики разделяют симметрии по разным категориям. Вероятно, вы больше всего знакомы с симметриями пространства, т. е. преобразованиями, которые передвигают или вращают предметы внешнего мира. Эти симметрии, включающие уже упомянутые вращательную и трансляционную симметрии, утверждают, что законы физики одинаковы для систем, независимо от того, в какую сторону они повернуты и в каком месте находятся.
Теперь я хочу рассмотреть другой тип симметрии, известный под названием
Однако традиционная менора обладает как пространственной, так и внутренней симметриями. Если свечи эквивалентны, что означает наличие внутренней симметрии, сама менора выглядит одинаково, если ее повернуть на 180° вокруг центральной свечи, что означает наличие пространственной симметрии. Но внутренняя симметрия может существовать даже при отсутствии симметрии пространства. Например, вы можете поменять местами одинаковые зеленые плитки в мозаике, даже если выложенный этими плитками лист имеет нерегулярную форму.
Другой пример внутренней симметрии — взаимозаменяемость двух тождественных красных шариков. Если вы держите в каждой, руке по одному такому шарику, не имеет значения, в какой руке какой шарик находится. Даже если вы пометите их цифрами 1 и 2, вы никогда не узнаете, не поменяла ли я их как-нибудь незаметно местами. Обратите внимание, что пример с шариками не связан ни с каким пространственным расположением этих шариков в том смысле, в каком говорилось в примерах с менорой и мозаикой. Внутренние симметрии относятся к самим телам, а не к их расположению в пространстве.
Физика частиц имеет дело с несколько абстрактными внутренними симметриями, которые связывают разные типы частиц. Эти симметрии рассматривают частицы и создающие их поля как взаимозаменяемые. Так же как два тождественных шарика ведут себя совершенно одинаково, если покатить их или ударить об стену, частицы двух типов, имеющие одинаковые заряды и массы, подчиняются одинаковым физическим законам. Описывающая это симметрия называется