Дальше вести построение на том же чертеже мы не станем: масштаб слишком крупен. Понятно, что чем масштаб мельче, тем большую часть пути планеты удастся нам поместить на чертеже и тем меньше будет резкость углов нарушать сходство нашей схемы с истинным путем планеты. На рис. 85 дана та же картина в более мелком масштабе для воображаемого случая встречи Солнца с каким-нибудь небесным телом, по массе подобным вышеупомянутой планете. Здесь ясно видно, как Солнце отклоняет планету-пришельца от ее первоначального пути и заставляет следовать по кривой
Что же это за кривая? Ответить на этот вопрос поможет нам геометрия. Наложите на чертеж (рис. 85) листок прозрачной бумаги и перенесите на нее шесть произвольно взятых точек планетного пути. Выбранные шесть точек (рис. 86) перенумеруйте в любом порядке и соедините между собой в той же последовательности прямыми отрезками. Вы получите вписанную в путь планеты шестиугольную фигуру частью с перекрещивающимися сторонами. Продолжите теперь прямую
Тщательно выполненный чертеж всегда даст указанные точки пересечения на одной прямой. Это доказывает, что исследуемая кривая есть либо эллипс, либо парабола, либо гипербола. К рис. 85 первое, очевидно, не подходит (кривая незамкнутая), значит, планета двигалась здесь по параболе или гиперболе. Соотношение первоначальной скорости и силы притяжения таково, что Солнце лишь отклоняет планету от прямолинейного пути, но не в состоянии заставить ее обращаться вокруг себя, «захватить» ее, как говорят астрономы.
Постараемся теперь подобным же образом уяснить второй закон движения планет – так называемый закон площадей. Рассмотрите внимательно рис. 21, (стр. 59). Двенадцать намеченных на ней точек делят ее на 12 участков; они не равны по длине, но нам известно, что они проходятся планетой в одинаковое время. Соединив точки 7, 2, J и т. д. с Солнцем, получите 12 фигур, которые приближенно можно представить треугольниками, если соединить точки хордами. Измерив их основания и высоты, вычислите их площади. Вы убедитесь, что все треугольники имеют одинаковую площадь. Другими словами, вы приходите ко второму закону Кеплера:
Итак, циркуль до известной степени помогает постичь первые два закона планетных движений. Чтобы уяснить себе третий закон, сменим циркуль на перо и проделаем несколько численных упражнений.
Задумывались ли вы над тем, что произошло бы с нашей Землей, если бы, встретив препятствие, она внезапно была остановлена в своем беге вокруг Солнца? Прежде всего, конечно, тот огромный запас энергии, которым наделена наша планета как движущееся тело, превратится в теплоту и нагреет земной шар. Земля мчится по орбите в десятки раз быстрее пули, и нетрудно вычислить, что переход энергии ее движения в теплоту породит чудовищный жар, который мгновенно превратит наш мир в исполинское облако раскаленных газов…
Но если бы даже Земля при внезапной остановке избегла этой участи, она все-таки обречена была бы на огненную гибель: увлекаемая Солнцем, она устремилась бы к нему с возрастающей скоростью и погибла бы в его пламенных объятиях.
Это роковое падение началось бы медленно, с черепашьей скоростью: в первую секунду Земля приблизилась бы к Солнцу только на 3 мм. Но с каждой секундой скорость ее движения прогрессивно возрастала бы, достигнув в последнюю секунду 600 км. С этой невообразимой скоростью земной шар обрушился бы на раскаленную поверхность Солнца.