Читаем Занимательная электроника полностью

Интересно рассмотреть вопрос — а нельзя ли упростить схемы этих комбинированных элементов, исключив из них третье реле, выполняющее инверсию? В самом деле, большинство реле имеют перекидные контакты, так за чем же дело стало — меняем нормально разомкнутые контакты на нормально замкнутые, и все! Легко заметить, что такая замена не будет адекватной — мы инвертируем здесь не общий выход элемента, а выходы каждого реле в отдельности, что равносильно инвертированию входов. Если обратиться к правилам де Моргана, то мы увидим, что такое изменение схемы приведет к тому, что элемент «И» превратится в «ИЛИ-НЕ», а «ИЛИ», соответственно, в «И-НЕ». Я советую читателю посидеть над этими соображениями и вывести таблицы истинности самостоятельно, чтобы убедиться, что все сказанное — правда. Другое полезное упражнение состоит в том, чтобы попытаться самому построить трехвходовые элементы, соответствующие уравнениям А + В + С и А х В х С (они будет состоять из трех реле).

Тем, кто не разобрался как следует в этом по необходимости кратком изложении, среди прочих источников особенно порекомендую обратиться к [16] — книге, написанной очень простым и понятным языком, ориентированным на неподготовленного читателя, но вместе с тем излагающей предмет во всех подробностях.


То же самое, но на транзисторах и диодах


Ясно, что использование реле для построения логических схем — метод, мягко говоря, несовременный. Хотя в истории и отмечены случаи построения целых компьютеров на основе реле (к ним принадлежали, в частности, легендарные Mark-I и Mark-II Говарда Эйкена, запущенные в эксплуатацию в 1944 и 1947 гг., соответственно), но у них было слишком много недостатков: прежде всего, крайне низкие надежность и быстродействие, порядка 20–30 Гц (не килогерц и тем более не мегагерц, а именно герц). Конечно, по сравнению с электромеханическими ручными калькуляторами это было просто сказкой (типовое время операции сложения у Mark-I составляло 0,3 с, т. е. в десятки и сотни раз превышало «быстродействие» человека с механическим калькулятором), и машины эти широко использовались на практике. Тем не менее, такое быстродействие казалось уже тогда недостаточным, потому довольно быстро перешли к использованию ламп, что позволило достичь порогов в десятки и сотни килогерц, а затем и транзисторов, с которыми частота работы возросла до единиц и десятков мегагерц.

* * *

Легенда о «баге»

С использованием реле в компьютерной технике связана легендарная история о возникновении термина «баг», как ошибки в программе. В буквальном переводе «bug» означает «жучок». В 1947 году между контактами одного из реле Mark-II застряла мошка, вызвав неисправность. Когда мошку извлекли, молодая сотрудница Эйкена Грейс Хоппер (позднее — крупнейший авторитет в программировании и единственная в истории женщина-адмирал флота США) приклеила ее между страницами лабораторного журнала с подписью: «первый случай выловленного бага». Страница эта сейчас хранится в музее Смитсоновского института.

* * *

Как же можно построить наши логические элементы на транзисторах? На рис. 14.4 показаны для примера схемы так называемой диодно-транзисторной логики, которая широко использовалась в производстве гибридных микросхем (т. е. еще до изобретения Нойсом и Килби твердотельной микросхемы, см. главу 11).



Рис. 14.4.Схемы реализации логических функций на диодах и транзисторах


В элементе «И-НЕ» (слева) в нормальном состоянии транзистор открыт, и на выходе его логический ноль, так что подача логической единицы на входы ничего не изменит. А подача логического нуля хотя бы на один из входов приведет к тому, что соответствующий диод откроется и станет шунтировать переход база-эмиттер, в результате чего транзистор закроется, и на выходе возникнет логическая единица, что соответствует функции «И-НЕ». Диод в эмиттере нужен для обеспечения надежного запирания транзистора.

На схеме справа наоборот, транзистор в нормальном состоянии заперт, и на выходе логическая единица, а подача хотя бы одной логической единицы на входы откроет соответствующий диод и через него — транзистор, на выходе тогда установится логический ноль, что соответствует функции «ИЛИ-НЕ». «Подпирающий» диод здесь не требуется, зато требуются токоограничивающие резисторы на входах.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки