Подробности
О великий и могучий язык С
! В нем самую простую вещь можно запутать до полной потери смысла. В нашем случае то же самое выражение можно было бы записать, как ((х < 0) | (х > 1)) & (у < 2), и ничего бы не изменилось. В этом языке (в отличие от Pascal) есть две разновидности логических операций: обычные («логическое И» &&, «логическое ИЛИ» ||) и поразрядные («поразрядное И» &, «поразрядное ИЛИ» |). Есть и, соответственно, «логическое НЕ» (!) и «поразрядное НЕ» (~). Термин «поразрядные» означает, что они применимы к многоразрядным двоичным числам. В результате их применения тоже получается многоразрядное двоичное число, необязательно ноль или единица, как в случае логических. Поскольку наши результаты операций сравнения содержат только один двоичный разряд (либо соблюдается, либо не соблюдается), то в данном случае логические и поразрядные операции оказываются идентичны, и можно писать и так, и так. А вот если в операциях участвуют обычные числа, то результат будет разный: «10&&7» равно «логической 1» (отличное от нуля значение всегда интерпретируется, как «правда»), тогда как «10&7» равно 2 (почему, будет рассказано далее). Как мы узнаем в* * *
Пусть
Интересный оборот примут события, если вместо «OR» между А и В поставить «AND», — легко догадаться, что выражение в скобках тогда не будет «правдой» ни при каком значении
(2)
то есть инвертируем выражение в скобках с помощью операции «НЕ», то получим обратный результат:
(3)
Это свойство выражается в так называемых правилах
Отметим, что из таблиц логического умножения и сложения вытекает еще одно любопытное следствие. Дело в том, что ассоциация значения «ложь» с нулем, а «правды» с единицей (положительная логика), есть действие вполне произвольное — ничто не мешает нам поступить наоборот (отрицательная логика). Такая замена приводит к тому, что все операции «ИЛИ» меняются на «И» и наоборот (рассмотрите таблицы внимательно). А вот операция «НЕ» к такой замене индифферентна — 0 меняется на 1 в любой логике.
Далее приведены несколько соотношений, которые вместе с правилами де Моргана помогают создавать и оптимизировать логические схемы. Некоторые из них очевидны, иные же — совсем нет.
Ассоциативный закон умножения:
A
x B x C = (A x B) x C = A x (B x C)Ассоциативный закон сложения:
A
+ B + C = (A + B) + C = A + (B + C)Другие формулы: