Читаем Занимательная электроника полностью

А что результат? Он будет равен 255, т. е. тому самому числу, которое, как мы договорились, и представляет — 1. Получается, что вычитание в такой системе происходит автоматически правильно, независимо от знака участвующих чисел. Если хотите, можете потренироваться и проверить, скажем, что будет, если в этой системе вычесть 240 из 100.

Немного смущает только эта самая операция нахождения дополнения до 2, точнее, в данном случае, до 256 — как ее осуществить на практике, если схема всего имеет 8 разрядов? В дальнейшем мы увидим, что иногда ее осуществлять вовсе не надо — некоторые электронные схемы ведут себя так, что при осуществлении вычитания вся процедура осуществляется автоматически. Особенно наглядно это выглядит для двоичных реверсивных счетчиков, которые мы будем рассматривать в главе 16.

В точности так же ведут себя и соответствующие команды в микропроцессорах — и если вы захотите произвести операцию вычитания числа 2 из содержимого восьмибитового регистра, содержащего число 1, то в регистре окажется число 255 (все единицы). А интерпретация результата — как отрицательного числа или как положительного — это уже ваши трудности.

В микропроцессорах есть обычно и команда, которая возвращает дополнение до 2, в большинстве ассемблеров она называется NEG, от слова «негативный», потому что меняет знак, если мы договариваемся считать числа «со знаком». А как ее можно было бы осуществить «вручную», не обращаясь в действительности к 9-му разряду? Вернемся к рассмотренным ранее примерам и выпишем столбиком исходные числа, результаты операции нахождения дополнения до 2 и результат еще одной манипуляции, которая представляет собой вычитание единицы из дополнения до 2, т. е., что то же самое, просто вычитания исходного числа из наивысшего числа диапазона (255):



Если мы сравним двоичные представления в верхней и нижней строках, то увидим, что они могут быть получены друг из друга путем инверсии каждого из битов. Эта операция называется нахождением дополнения до 1 (потому что число, из которого вычитается, содержит все 1 во всех разрядах; для десятичной системы аналогичная операция называется дополнение до 9). Для нахождения дополнения до 1 девятый разряд не требуется, да и схему можно построить так, чтобы никаких вычитаний не производить, а просто переворачивать биты. То есть, для полного сведения вычитания к сложению надо проделать три операции:

1. Найти дополнение до 1 для вычитаемого (инвертировать его биты).

2. Прибавить к результату 1, чтобы найти дополнение до 2.

3. Сложить уменьшаемое и дополнение до 2 для вычитаемого.

Заметим, что все сложности с этими многочисленными дополнениями связаны с наличием нуля в ряду натуральных чисел — если бы его не было, дополнение было бы всего одно, и операция вычитания упростилась. Так может, греки все же были в чем-то правы?

В заключение обратим внимание на еще одно замечательное свойство двоичных чисел, которое часто позволяет значительно облегчить операции умножения и деления, а именно: умножению на 2 соответствует операция сдвига всех разрядов числа на один разряд влево, а операции деления на 2 — вправо. Крайние разряды (старший при умножении и младший при делении) в общем случае при этом должны теряться, но в микропроцессорах есть специальный бит переноса, в который эти «потерянные» разряды помещаются. Противоположные крайние разряды (младший при умножении и старший при делении) в общем случае замещаются нулями, но могут и замещаться значением бита переноса, что позволяет без лишних проблем делить и умножать числа с разрядностью больше одного байта. Как можно догадаться, умножению и делению на более высокие степени двойки будет соответствовать операция сдвига в нужную сторону на иное (равное степени) число разрядов.

Излишне говорить, что операцию сдвига разрядов в электронных схемах производить неизмеримо проще, чем операции деления и умножения. Есть и специальные схемы для этой операции — сдвиговые регистры, которые мы также будем «проходить» (в главе 16).


Дробные числа


Сразу заметим, что в некомпьютерной электронике дробными числами стараются не пользоваться. При необходимости их переводят в целые, умножая на соответствующую степень десяти (а чаще — даже на степень 2, что проще), при этом все остальные участвующие в расчетах величины также масштабируются в нужное число раз. Затем при выводе, к примеру, на цифровой дисплей, запятая просто устанавливается в нужном месте (иногда заранее, и без возможности изменения ее положения). То есть, для цифровой схемы не существует значения температуры, равного 30,81 градуса, а есть число 3081 в BCD-формате. Примерно те же действия мы производили, когда конструировали цифровой термометр в главе 13, — на самом деле он показывает целое число милливольт в нужном масштабе.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки