Читаем Занимательная электроника полностью

Заметки на полях

Объяснение этой кажущейся несуразице с лишними выводами одновходовых элементов простое — в первой серии 4000 (К176) существовали преобразователи уровня для перехода от 9-вольтовой КМОП-логики к 5-вольтовой ТТЛ (откуда и отечественное название ПУ). В этих преобразователях на вывод 16 подавалось еще одно напряжение питания 9 В. В сериях 4000А и 4000В необходимость в дополнительном питании отпала (они и сами чудесно работают при питании 5 В), а разводка выводов осталась.

* * *

Следует отметить, что по внутреннему устройству микросхемы с одновходовыми элементами, вероятно, самые простые из всех микросхем вообще. Элемент с инверсией (ЛН2, 4049) состоит всего из двух транзисторов (см. рис. 15.1 справа), а буферный элемент (ПУ4, 4050) — из двух таких инверторов, включенных последовательно. Однако у них есть один эксплуатационный нюанс, который также унаследован от времен, когда такие микросхемы служили для перехода от КМОП к ТТЛ.

Он заключается в том, что нижний транзистор выходного каскада мощнее верхнего. В результате в состоянии логического нуля по выходу эти микросхемы могут принять большой втекающий ток без ущерба для логических уровней — 3–5 мА при питании 5 В, и до 40 мА при 15 В. А вот в состоянии логической единицы значения выходного тока у них стандартные для «классической» КМОП — 1,6 мА при 5 В и до 12 мА при 15 В питания. При практическом применении ЛН2 и ПУ4 эту несимметрию нужно учитывать.

В отличие от «классических», быстродействующие аналоги 74НС4049 и 74НС4050 (в АС-версии их не существует, там есть аналоги только с открытым истоком, см. приложение 5) полностью симметричны, допускают долговременный как втекающий, так и вытекающий выходной ток через каждый вывод до 25 мА (но не более 50 мА в сумме по всем выводам) и предпочтительны для использования при напряжениях питания 3–5 В.

Выходы обычных логических элементов можно объединять с целью умощнения — например, выход одного инвертора в составе микросхемы ЛН2 формально «тянет» ток до 3,2 мА при 5 В питания (на самом деле гораздо больше, если выйти за пределы ограничений, накладываемых условием ненарушения логических уровней), а если соединить выходы всех шести входящих в состав микросхемы элементов, то можно подключать нагрузку до 20 мА, — главное, не превысить допустимый ток через вывод питания. Естественно, при этом необходимо также объединить и входы, превратив всю микросхему как бы в один мощный инвертор.

Есть, разумеется, и логические элементы с большим количеством входов. Я не буду приводить здесь разводку выводов других типов логических микросхем, чтобы не загромождать текст, т. к. наличие отдельного справочника по ним в любом случае обязательно. В качестве справочника, в котором приведены не только основные сведения и разводка выводов, но и подробно объясняется работа микросхем базовых серий с многочисленными примерами, я бы рекомендовал разыскать у букинистов или скачать из Сети книгу [18]. Это суперпопулярное пособие вышло в свое время несколькими изданиями и почти не устарело (правда, некоторых современных типов микросхем в нем нет). В Сети, разумеется, можно найти и другие подобные справочники.

Следующей широко употребляемой разновидностью логических микросхем являются элементы, имеющие выход с открытым истоком (с открытым коллектором для ТТЛ). Такой выход, как мы помним, имеет компаратор 521САЗ (см. главу 12). Есть такие элементы и с чисто логическими функциями: в КМОП-серии это CD40107 (561ЛА10, содержит два двухвходовых элемента «И-НЕ»), в быстродействующих КМОП это 74НС05 (шесть инверторов, аналог ЛА10 под названием 74НС22 снят с производства). Причем CD40107 может коммутировать значительный втекающий ток — аж до 136 мА при 25 °C и 10 В питания, и 70 мА при 5 В. 74НС05 скромнее, и коммутирует стандартные для этой серии 20 мА.

Эти элементы используют не только для коммутации мощной нагрузки, но и для объединения на общей шине в так называемое проводное или монтажное «ИЛИ» (рис. 15.4). Название это, на мой взгляд, несколько неудачное, ибо соответствует отрицательной логике — на общей шине логическая единица будет только тогда, когда выходы всех элементов установятся в 1, а если хотя бы один выход находится в нуле, то и на шине будет ноль, что в положительной логике соответствует операции «И».



Рис. 15.4.Объединение элементов с открытым коллектором по схеме «проводное ИЛИ»


Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки